hen 4-¹ = Given b == = 1 3 = 6. solve Az = A = 3 3 -1 -9 -8 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Matrix Inversion and Solution of Linear Systems

#### Problem Statement

If 
\[ A = \begin{bmatrix} 3 & -9 & 5 \\ 3 & -8 & 5 \\ -1 & 3 & -2 \end{bmatrix}, \]

then we need to find the inverse of matrix \(A\), denoted as \( A^{-1} \):

\[ A^{-1} = \begin{bmatrix} \quad \quad \quad \\ \quad \quad \quad \\ \quad \quad \quad \end{bmatrix}. \]

#### Linear System Solution

Given vector \(\vec{b}\):

\[ \vec{b} = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}, \]

we are to solve the equation \( A \vec{x} = \vec{b} \).

#### Solution

The solution vector \(\vec{x}\) is given by:

\[ \vec{x} = \begin{bmatrix} \quad \\ \quad \\ \quad \end{bmatrix}. \]

The task requires calculating \( A^{-1} \) and using it to find \(\vec{x} = A^{-1}\vec{b}\).
Transcribed Image Text:### Matrix Inversion and Solution of Linear Systems #### Problem Statement If \[ A = \begin{bmatrix} 3 & -9 & 5 \\ 3 & -8 & 5 \\ -1 & 3 & -2 \end{bmatrix}, \] then we need to find the inverse of matrix \(A\), denoted as \( A^{-1} \): \[ A^{-1} = \begin{bmatrix} \quad \quad \quad \\ \quad \quad \quad \\ \quad \quad \quad \end{bmatrix}. \] #### Linear System Solution Given vector \(\vec{b}\): \[ \vec{b} = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}, \] we are to solve the equation \( A \vec{x} = \vec{b} \). #### Solution The solution vector \(\vec{x}\) is given by: \[ \vec{x} = \begin{bmatrix} \quad \\ \quad \\ \quad \end{bmatrix}. \] The task requires calculating \( A^{-1} \) and using it to find \(\vec{x} = A^{-1}\vec{b}\).
Expert Solution
Step 1: Method

To find the inverse of  matrix we can use method of open square brackets A colon I close square brackets equals open square brackets I colon A to the power of negative 1 end exponent close square brackets

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,