Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is: 2 Li(s) + Ag:CrO4(s)→ Li:CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: Half-Reaction Ag" (aq) + Ag(s) Age(s) +eAg(s) + Br"(aq) AgCl(s) + Ag(s) + C(aq) Ag(s) + 2S₂O3(aq) Ag(CN)₂ (aq) +eAg(s) + 2CN(a) Ag-Cro(s) + 2e2 Ag(s) + CO2(aq) Agl(s) + Ag(s) + (aq) Ag(S₂0₂):¹(aq) + Al³+ (aq) + 3e-Al(s) H₂AsO₂(aq) + 2H*(aq) + 2€˜ — H₂AsO₂(aq) + H₂O(1) +0.56 K*(aq) + e-K(s) Ba(aq) + 2 Ba(1) -2.90 L(a)+(s) BIO (aq) + 2H(aq) + 3e Bi(s) + H₂O(1) Bry() +2e-2 Be (aq) 2 BeO, (aq) + 12H(aq) + 10e Bry(1) + 6H₂O(1) 2CO(g) + 2H(aq) + 2eH₂C₂O₂(aq) Ca(aq) + 2 Ca(s) Cd²(aq) + 2e-Cd(s) Ce(a) + Ce(a) C(s) +2e2C1(a) 2HC10(aq) + 2H(aq) + 2eCl₂() + 2H₂O(1) CIO(a) + H₂O(1) +2e Cr(aq) + 2OH(aq) 2C10, (aq) + 12H(aq) + 10e — Cl₂(g) + 6H₂O(1) Co² (aq) + 2e Co(s) con lai) từ cong) Cr³(aq) + 3e Cr(s) Cr³(aq) + Cr²(aq) CryOy (aq) +14 11" (ap) + 6e2Cr¹(ay)+7H₂O() CrO2(aq) + 4H₂O(l) + 3e"→→→ Cu(aq) + 2e Cu²(aq) + Cu(s) Cu(a) Ca(OH),(s) + SOH(aq) E(V) Half-Reaction +0.80 2H₂O(1) + 2H₂) + 2OH(a) +0.10 HO₂ (aq) + H₂O() +2e3OH(aq) +0.22 H₂O₂(aq) + 2H(aq) + 2e2H₂O(n) -0.31 Hg(aq) + 2e-2Hg(1) +0.45 2Hg(aq) + 2Hg(a) -0.15 +0.01 g (a)+2eHg(1) )+2e-21(a) -1.66 210,(a)+ 12 H(aq) + 10e(s) + 6H₂O(1) Cu (aq) + Cul(s) + Cu(s) Cu()+1(a) Ft) +22F" (ay) Fe²(aq) + 2e Fe(s) Fe²(a) Fe (aq) + Fe(CN)(aq) + e-Fe(CN)(aq) 2H(aq) + 2H₂() +0.32 Mg(aq) +2e-Mg(s) +1.07 Mn(aq) + 2e-Mn(s) +1.52 MnOy(s) + 4H(aq) + 2e-Mn²(aq) + 2H₂O(1) -0.49 -2.87 MnO, "(aq) + 8H(aq) + Se Mn² (aq) + 4H₂O() MnO₂ (aq) + 2H₂O()+3e-MnO(s) + 4OH(aq) -0.40 HNO(aq) + H²(aq) + NO(g) + H₂O(l) +1.61 N) + 4H₂O(+4e4OH(aq) + N₂H₂(aq) +1.36 N) +SH(aq) + 4e²N₂H₂(aq) +1.63 NO, "(aq) + 4H(aq) + 3e NO(g) + 2H₂O(1) +0.89 Na(aq) + Na(s) +1.47 N²(a)+2e-Ni(s) -0.28 0(g) + 4H(aq) + 4e2H11₂0(1) +1.84 0(g) + 2H₂O()+4e4OH(aq) -0.74 0(g) + 2H(aq) + 2H₂O₂(aq) -0.41 0(g) + 2H(aq) + 2e O₂(g) + H₂O(1) +1.33 Pb² (aq) + 2e Pb(s) -0.13 Pb0,(s) + HSO,(aq) + 3H(aq) + 2e² PbSO,(s) + 2H₂O(1) +0.34 PbSO,(s) + H²(aq) + 2e Pb(s) + HSO₂ (aq) +0.15 PIC12(aq) + 2e Pt(s) + 4C(aq) +0.52 S(s) + 2H(aq) + 2H₂(g) -0.19 H₂SO,(aq) + 4H(aq) + 4e +2.87 HSO₂(aq) + 3H²(aq) + 2 -0.44 Sn²(aq) + 2e Sn(s) +0.77 Sn (aq) + 2e-S²(aq) +0.36 VO₂(aq) + 2H(aq) + e-VO² (aq) + H₂O(1) 0.00 Zn(aq) + 2² Zn(s) S(s) + 3H₂O(1) H₂SO₂(aq) + H₂O(1) E"(V) -0.83 +0.88 +1.78 +0.79 +0.92 +0.85 +0.54 +1.20 -2.92 -3.05 -2.37 -1.18 +1.23 +1.51 +0.59 +1.00 -1.16 -0.23 +0.96 -2.71 -0.28 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
Heart pacemakers are often powered by lithium-silver chromate "button"
batteries. The overall cell reaction is:
2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s)
(a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode
or the cathode?
(b) Choose the two half-reactions from a table of standard reduction potentials that most
closely approximate the reaction that occur within the battery. What is the standard
voltage generated by a cell operating with these half-reactions?
(c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to
what you've shown me in (b)?
(d) Calculate the voltage at body temperature.
Standard reduction potentials are as below:
Half-Reaction
Agt (aq) + e Ag(s)
AgBr(s) + ¢* * Ag(s) + Br"(aq)
AgCl(s) + e Ag(s) + Cl(aq)
Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq)
AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq)
Agl(s) + e Ag(s) + (aq)
Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq)
Al³+ (aq) + 3e Al(s)
H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1)
Ba²+ (aq) + 2 e Ba(s)
BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1)
Br₂(1) +2 e 2 Br (aq)
2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1)
2 CO₂(g) + 2H(aq) + 2e
H₂C₂O4(aq)
Ca²+ (aq) + 2e
Ca(s)
Cd(s)
Ce³(aq)
Cu²+ (aq) + 2e
Cu²+ (aq) + e
Cu (aq) +
Cd²+ (aq) + 2e
Ce+ (aq) +
Cl₂(g) + 2e- 2 C1 (aq)
2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1)
CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq)
2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1)
Co²+ (aq) + 2e
Co(s)
Cot(aq)
Cost(aq) +ẽ
+1.84 O₂(g) + 2H₂O(l) + 4e¯
Cr³+ (aq) + 3e
Cr(s)
-0.74 O₂(g) + 2H(aq) + 2e →
Cr³+ (aq) + Cr²+ (aq)
-0.41 O₂(g) + 2H*(aq) + 2e
Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s)
CrO2(aq) + 4H₂O(1) + 3e-
-0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e
Cr(OH),(s) + 5OH(aq)
Cu(s)
Cu* (aq)
Cu(s)
Cu(s) + (aq)
Cul(s) +
F₂(g) + 2e2F (aq)
Fe²+ (aq) + 2e
Fe(s)
Fe³+ (aq) + e
Fe²+ (aq)
Fe(CN) (aq) + e Fe(CN),(aq)
2H*(aq) + 2e
E° (V)
Half-Reaction
+0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq)
+0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq)
+0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1)
-0.31 Hg (aq) + 2e-2 Hg(1)
+0.45 2 Hg (aq) + 2e Hg₂+ (aq)
-0.15 Hg2+ (aq) + 2eHg(1)
12₂(s) + 2e ► 21 (aq)
-1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1)
+0.56 K*(aq) + eK(s)
-2.90 Li*(aq) +eLi(s)
+0.01
H₂(g)
+0.32 Mg (aq) + 2e
Mg(s)
+1.07 Mn²(aq) + 2e"- Mn(s)
+1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1)
-0.49
MnO, (aq) + 8H(aq) + Se
Mn² (aq) + 4H₂O(1)
-2.87
-0.40
MnO₂ (aq) + 2H₂O(l) + 3e
MnO₂(s) + 4 OH(aq)
HNO₂(aq) + H(aq) + e NO(g) + H₂O(l)
+1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq)
+1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq)
NO(g) + 2H₂O(1)
+1.63 NO₂ (aq) + 4H(aq) + 3e
+0.89 Na (aq) + e- Na(s)
+1.47
-0.28
Ni²+ (aq) + 2e → Ni(s)
O₂(g) + 4H(aq) + 4e-2 H₂O(1)
4 OH(aq)
H₂O₂(aq)
O₂(g) + H₂O(1)
PbSO4(s) + 2 H₂O(1)
+0.34
+0.15 PIC12(aq) + 2e
+0.52 S(s) + 2H(aq) + 2e
PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq)
Pt(s) + 4 Cl(aq)
H₂S(g)
-0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1)
H₂SO3(aq) + H₂O(1)
+2.87 HSO (aq) + 3 H*(aq) + 2e
-0.44 Sn²(aq) + 2e-Sn(s)
+0.77 Sn (aq) + 2e
Sn²+ (aq)
+0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1)
0.00 Zn²(aq) + 2e-Zn(s)
E°(V)
-0.83
+0.88
+1.78
+0.79
+0.92
+0.85
+0.54
+1.20
-2.92
-3.05
-2.37
-1.18
+1.23
+1.51
+0.59
+1.00
-1.16
-0.23
+0.96
-2.71
-0.28
+1.23
+0.40
+0.68
+2.07
-0.13
+1.69
-0.36
+0.73
+0.14
+0.45
+0.17
-0.14
+0.15
+1.00
-0.76
Transcribed Image Text:Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is: 2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: Half-Reaction Agt (aq) + e Ag(s) AgBr(s) + ¢* * Ag(s) + Br"(aq) AgCl(s) + e Ag(s) + Cl(aq) Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq) AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq) Agl(s) + e Ag(s) + (aq) Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq) Al³+ (aq) + 3e Al(s) H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1) Ba²+ (aq) + 2 e Ba(s) BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1) Br₂(1) +2 e 2 Br (aq) 2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1) 2 CO₂(g) + 2H(aq) + 2e H₂C₂O4(aq) Ca²+ (aq) + 2e Ca(s) Cd(s) Ce³(aq) Cu²+ (aq) + 2e Cu²+ (aq) + e Cu (aq) + Cd²+ (aq) + 2e Ce+ (aq) + Cl₂(g) + 2e- 2 C1 (aq) 2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1) CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq) 2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1) Co²+ (aq) + 2e Co(s) Cot(aq) Cost(aq) +ẽ +1.84 O₂(g) + 2H₂O(l) + 4e¯ Cr³+ (aq) + 3e Cr(s) -0.74 O₂(g) + 2H(aq) + 2e → Cr³+ (aq) + Cr²+ (aq) -0.41 O₂(g) + 2H*(aq) + 2e Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s) CrO2(aq) + 4H₂O(1) + 3e- -0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e Cr(OH),(s) + 5OH(aq) Cu(s) Cu* (aq) Cu(s) Cu(s) + (aq) Cul(s) + F₂(g) + 2e2F (aq) Fe²+ (aq) + 2e Fe(s) Fe³+ (aq) + e Fe²+ (aq) Fe(CN) (aq) + e Fe(CN),(aq) 2H*(aq) + 2e E° (V) Half-Reaction +0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq) +0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq) +0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1) -0.31 Hg (aq) + 2e-2 Hg(1) +0.45 2 Hg (aq) + 2e Hg₂+ (aq) -0.15 Hg2+ (aq) + 2eHg(1) 12₂(s) + 2e ► 21 (aq) -1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1) +0.56 K*(aq) + eK(s) -2.90 Li*(aq) +eLi(s) +0.01 H₂(g) +0.32 Mg (aq) + 2e Mg(s) +1.07 Mn²(aq) + 2e"- Mn(s) +1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1) -0.49 MnO, (aq) + 8H(aq) + Se Mn² (aq) + 4H₂O(1) -2.87 -0.40 MnO₂ (aq) + 2H₂O(l) + 3e MnO₂(s) + 4 OH(aq) HNO₂(aq) + H(aq) + e NO(g) + H₂O(l) +1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq) +1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq) NO(g) + 2H₂O(1) +1.63 NO₂ (aq) + 4H(aq) + 3e +0.89 Na (aq) + e- Na(s) +1.47 -0.28 Ni²+ (aq) + 2e → Ni(s) O₂(g) + 4H(aq) + 4e-2 H₂O(1) 4 OH(aq) H₂O₂(aq) O₂(g) + H₂O(1) PbSO4(s) + 2 H₂O(1) +0.34 +0.15 PIC12(aq) + 2e +0.52 S(s) + 2H(aq) + 2e PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq) Pt(s) + 4 Cl(aq) H₂S(g) -0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1) H₂SO3(aq) + H₂O(1) +2.87 HSO (aq) + 3 H*(aq) + 2e -0.44 Sn²(aq) + 2e-Sn(s) +0.77 Sn (aq) + 2e Sn²+ (aq) +0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1) 0.00 Zn²(aq) + 2e-Zn(s) E°(V) -0.83 +0.88 +1.78 +0.79 +0.92 +0.85 +0.54 +1.20 -2.92 -3.05 -2.37 -1.18 +1.23 +1.51 +0.59 +1.00 -1.16 -0.23 +0.96 -2.71 -0.28 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY