Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is: 2 Li(s) + Ag:CrO4(s)→ Li:CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: Half-Reaction Ag" (aq) + Ag(s) Age(s) +eAg(s) + Br"(aq) AgCl(s) + Ag(s) + C(aq) Ag(s) + 2S₂O3(aq) Ag(CN)₂ (aq) +eAg(s) + 2CN(a) Ag-Cro(s) + 2e2 Ag(s) + CO2(aq) Agl(s) + Ag(s) + (aq) Ag(S₂0₂):¹(aq) + Al³+ (aq) + 3e-Al(s) H₂AsO₂(aq) + 2H*(aq) + 2€˜ — H₂AsO₂(aq) + H₂O(1) +0.56 K*(aq) + e-K(s) Ba(aq) + 2 Ba(1) -2.90 L(a)+(s) BIO (aq) + 2H(aq) + 3e Bi(s) + H₂O(1) Bry() +2e-2 Be (aq) 2 BeO, (aq) + 12H(aq) + 10e Bry(1) + 6H₂O(1) 2CO(g) + 2H(aq) + 2eH₂C₂O₂(aq) Ca(aq) + 2 Ca(s) Cd²(aq) + 2e-Cd(s) Ce(a) + Ce(a) C(s) +2e2C1(a) 2HC10(aq) + 2H(aq) + 2eCl₂() + 2H₂O(1) CIO(a) + H₂O(1) +2e Cr(aq) + 2OH(aq) 2C10, (aq) + 12H(aq) + 10e — Cl₂(g) + 6H₂O(1) Co² (aq) + 2e Co(s) con lai) từ cong) Cr³(aq) + 3e Cr(s) Cr³(aq) + Cr²(aq) CryOy (aq) +14 11" (ap) + 6e2Cr¹(ay)+7H₂O() CrO2(aq) + 4H₂O(l) + 3e"→→→ Cu(aq) + 2e Cu²(aq) + Cu(s) Cu(a) Ca(OH),(s) + SOH(aq) E(V) Half-Reaction +0.80 2H₂O(1) + 2H₂) + 2OH(a) +0.10 HO₂ (aq) + H₂O() +2e3OH(aq) +0.22 H₂O₂(aq) + 2H(aq) + 2e2H₂O(n) -0.31 Hg(aq) + 2e-2Hg(1) +0.45 2Hg(aq) + 2Hg(a) -0.15 +0.01 g (a)+2eHg(1) )+2e-21(a) -1.66 210,(a)+ 12 H(aq) + 10e(s) + 6H₂O(1) Cu (aq) + Cul(s) + Cu(s) Cu()+1(a) Ft) +22F" (ay) Fe²(aq) + 2e Fe(s) Fe²(a) Fe (aq) + Fe(CN)(aq) + e-Fe(CN)(aq) 2H(aq) + 2H₂() +0.32 Mg(aq) +2e-Mg(s) +1.07 Mn(aq) + 2e-Mn(s) +1.52 MnOy(s) + 4H(aq) + 2e-Mn²(aq) + 2H₂O(1) -0.49 -2.87 MnO, "(aq) + 8H(aq) + Se Mn² (aq) + 4H₂O() MnO₂ (aq) + 2H₂O()+3e-MnO(s) + 4OH(aq) -0.40 HNO(aq) + H²(aq) + NO(g) + H₂O(l) +1.61 N) + 4H₂O(+4e4OH(aq) + N₂H₂(aq) +1.36 N) +SH(aq) + 4e²N₂H₂(aq) +1.63 NO, "(aq) + 4H(aq) + 3e NO(g) + 2H₂O(1) +0.89 Na(aq) + Na(s) +1.47 N²(a)+2e-Ni(s) -0.28 0(g) + 4H(aq) + 4e2H11₂0(1) +1.84 0(g) + 2H₂O()+4e4OH(aq) -0.74 0(g) + 2H(aq) + 2H₂O₂(aq) -0.41 0(g) + 2H(aq) + 2e O₂(g) + H₂O(1) +1.33 Pb² (aq) + 2e Pb(s) -0.13 Pb0,(s) + HSO,(aq) + 3H(aq) + 2e² PbSO,(s) + 2H₂O(1) +0.34 PbSO,(s) + H²(aq) + 2e Pb(s) + HSO₂ (aq) +0.15 PIC12(aq) + 2e Pt(s) + 4C(aq) +0.52 S(s) + 2H(aq) + 2H₂(g) -0.19 H₂SO,(aq) + 4H(aq) + 4e +2.87 HSO₂(aq) + 3H²(aq) + 2 -0.44 Sn²(aq) + 2e Sn(s) +0.77 Sn (aq) + 2e-S²(aq) +0.36 VO₂(aq) + 2H(aq) + e-VO² (aq) + H₂O(1) 0.00 Zn(aq) + 2² Zn(s) S(s) + 3H₂O(1) H₂SO₂(aq) + H₂O(1) E"(V) -0.83 +0.88 +1.78 +0.79 +0.92 +0.85 +0.54 +1.20 -2.92 -3.05 -2.37 -1.18 +1.23 +1.51 +0.59 +1.00 -1.16 -0.23 +0.96 -2.71 -0.28 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
Heart pacemakers are often powered by lithium-silver chromate "button"
batteries. The overall cell reaction is:
2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s)
(a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode
or the cathode?
(b) Choose the two half-reactions from a table of standard reduction potentials that most
closely approximate the reaction that occur within the battery. What is the standard
voltage generated by a cell operating with these half-reactions?
(c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to
what you've shown me in (b)?
(d) Calculate the voltage at body temperature.
Standard reduction potentials are as below:
Half-Reaction
Agt (aq) + e Ag(s)
AgBr(s) + ¢* * Ag(s) + Br"(aq)
AgCl(s) + e Ag(s) + Cl(aq)
Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq)
AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq)
Agl(s) + e Ag(s) + (aq)
Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq)
Al³+ (aq) + 3e Al(s)
H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1)
Ba²+ (aq) + 2 e Ba(s)
BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1)
Br₂(1) +2 e 2 Br (aq)
2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1)
2 CO₂(g) + 2H(aq) + 2e
H₂C₂O4(aq)
Ca²+ (aq) + 2e
Ca(s)
Cd(s)
Ce³(aq)
Cu²+ (aq) + 2e
Cu²+ (aq) + e
Cu (aq) +
Cd²+ (aq) + 2e
Ce+ (aq) +
Cl₂(g) + 2e- 2 C1 (aq)
2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1)
CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq)
2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1)
Co²+ (aq) + 2e
Co(s)
Cot(aq)
Cost(aq) +ẽ
+1.84 O₂(g) + 2H₂O(l) + 4e¯
Cr³+ (aq) + 3e
Cr(s)
-0.74 O₂(g) + 2H(aq) + 2e →
Cr³+ (aq) + Cr²+ (aq)
-0.41 O₂(g) + 2H*(aq) + 2e
Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s)
CrO2(aq) + 4H₂O(1) + 3e-
-0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e
Cr(OH),(s) + 5OH(aq)
Cu(s)
Cu* (aq)
Cu(s)
Cu(s) + (aq)
Cul(s) +
F₂(g) + 2e2F (aq)
Fe²+ (aq) + 2e
Fe(s)
Fe³+ (aq) + e
Fe²+ (aq)
Fe(CN) (aq) + e Fe(CN),(aq)
2H*(aq) + 2e
E° (V)
Half-Reaction
+0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq)
+0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq)
+0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1)
-0.31 Hg (aq) + 2e-2 Hg(1)
+0.45 2 Hg (aq) + 2e Hg₂+ (aq)
-0.15 Hg2+ (aq) + 2eHg(1)
12₂(s) + 2e ► 21 (aq)
-1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1)
+0.56 K*(aq) + eK(s)
-2.90 Li*(aq) +eLi(s)
+0.01
H₂(g)
+0.32 Mg (aq) + 2e
Mg(s)
+1.07 Mn²(aq) + 2e"- Mn(s)
+1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1)
-0.49
MnO, (aq) + 8H(aq) + Se
Mn² (aq) + 4H₂O(1)
-2.87
-0.40
MnO₂ (aq) + 2H₂O(l) + 3e
MnO₂(s) + 4 OH(aq)
HNO₂(aq) + H(aq) + e NO(g) + H₂O(l)
+1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq)
+1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq)
NO(g) + 2H₂O(1)
+1.63 NO₂ (aq) + 4H(aq) + 3e
+0.89 Na (aq) + e- Na(s)
+1.47
-0.28
Ni²+ (aq) + 2e → Ni(s)
O₂(g) + 4H(aq) + 4e-2 H₂O(1)
4 OH(aq)
H₂O₂(aq)
O₂(g) + H₂O(1)
PbSO4(s) + 2 H₂O(1)
+0.34
+0.15 PIC12(aq) + 2e
+0.52 S(s) + 2H(aq) + 2e
PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq)
Pt(s) + 4 Cl(aq)
H₂S(g)
-0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1)
H₂SO3(aq) + H₂O(1)
+2.87 HSO (aq) + 3 H*(aq) + 2e
-0.44 Sn²(aq) + 2e-Sn(s)
+0.77 Sn (aq) + 2e
Sn²+ (aq)
+0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1)
0.00 Zn²(aq) + 2e-Zn(s)
E°(V)
-0.83
+0.88
+1.78
+0.79
+0.92
+0.85
+0.54
+1.20
-2.92
-3.05
-2.37
-1.18
+1.23
+1.51
+0.59
+1.00
-1.16
-0.23
+0.96
-2.71
-0.28
+1.23
+0.40
+0.68
+2.07
-0.13
+1.69
-0.36
+0.73
+0.14
+0.45
+0.17
-0.14
+0.15
+1.00
-0.76
Transcribed Image Text:Heart pacemakers are often powered by lithium-silver chromate "button" batteries. The overall cell reaction is: 2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: Half-Reaction Agt (aq) + e Ag(s) AgBr(s) + ¢* * Ag(s) + Br"(aq) AgCl(s) + e Ag(s) + Cl(aq) Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq) AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq) Agl(s) + e Ag(s) + (aq) Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq) Al³+ (aq) + 3e Al(s) H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1) Ba²+ (aq) + 2 e Ba(s) BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1) Br₂(1) +2 e 2 Br (aq) 2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1) 2 CO₂(g) + 2H(aq) + 2e H₂C₂O4(aq) Ca²+ (aq) + 2e Ca(s) Cd(s) Ce³(aq) Cu²+ (aq) + 2e Cu²+ (aq) + e Cu (aq) + Cd²+ (aq) + 2e Ce+ (aq) + Cl₂(g) + 2e- 2 C1 (aq) 2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1) CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq) 2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1) Co²+ (aq) + 2e Co(s) Cot(aq) Cost(aq) +ẽ +1.84 O₂(g) + 2H₂O(l) + 4e¯ Cr³+ (aq) + 3e Cr(s) -0.74 O₂(g) + 2H(aq) + 2e → Cr³+ (aq) + Cr²+ (aq) -0.41 O₂(g) + 2H*(aq) + 2e Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s) CrO2(aq) + 4H₂O(1) + 3e- -0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e Cr(OH),(s) + 5OH(aq) Cu(s) Cu* (aq) Cu(s) Cu(s) + (aq) Cul(s) + F₂(g) + 2e2F (aq) Fe²+ (aq) + 2e Fe(s) Fe³+ (aq) + e Fe²+ (aq) Fe(CN) (aq) + e Fe(CN),(aq) 2H*(aq) + 2e E° (V) Half-Reaction +0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq) +0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq) +0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1) -0.31 Hg (aq) + 2e-2 Hg(1) +0.45 2 Hg (aq) + 2e Hg₂+ (aq) -0.15 Hg2+ (aq) + 2eHg(1) 12₂(s) + 2e ► 21 (aq) -1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1) +0.56 K*(aq) + eK(s) -2.90 Li*(aq) +eLi(s) +0.01 H₂(g) +0.32 Mg (aq) + 2e Mg(s) +1.07 Mn²(aq) + 2e"- Mn(s) +1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1) -0.49 MnO, (aq) + 8H(aq) + Se Mn² (aq) + 4H₂O(1) -2.87 -0.40 MnO₂ (aq) + 2H₂O(l) + 3e MnO₂(s) + 4 OH(aq) HNO₂(aq) + H(aq) + e NO(g) + H₂O(l) +1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq) +1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq) NO(g) + 2H₂O(1) +1.63 NO₂ (aq) + 4H(aq) + 3e +0.89 Na (aq) + e- Na(s) +1.47 -0.28 Ni²+ (aq) + 2e → Ni(s) O₂(g) + 4H(aq) + 4e-2 H₂O(1) 4 OH(aq) H₂O₂(aq) O₂(g) + H₂O(1) PbSO4(s) + 2 H₂O(1) +0.34 +0.15 PIC12(aq) + 2e +0.52 S(s) + 2H(aq) + 2e PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq) Pt(s) + 4 Cl(aq) H₂S(g) -0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1) H₂SO3(aq) + H₂O(1) +2.87 HSO (aq) + 3 H*(aq) + 2e -0.44 Sn²(aq) + 2e-Sn(s) +0.77 Sn (aq) + 2e Sn²+ (aq) +0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1) 0.00 Zn²(aq) + 2e-Zn(s) E°(V) -0.83 +0.88 +1.78 +0.79 +0.92 +0.85 +0.54 +1.20 -2.92 -3.05 -2.37 -1.18 +1.23 +1.51 +0.59 +1.00 -1.16 -0.23 +0.96 -2.71 -0.28 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY