he wave equation of a stretched string can be written as, J²y μ J²y дх2 Tat² (a) Define each variable and identify what the wave speed is on the string? (b) The most general solution, = y(x, t) = A cos(kx − wt) + B sin(kx — wt) show that is is a solution and that for a point of fixed x on the string that that particle experiences simple harmonic motion. Sketch for this particle how y, y and y vary with time. = (c) The two ends of the string are now fixed such that y 0 when x = 0 and x = L. With these boundary conditions, what are the allowed vibrations on the string? Sketch the first three modes and list their \, v, k and w. (d) The highest and lowest frequencies on a piano are 4186.01 Hz and 27.5Hz, given that piano string has a typical tension of 700N and assuming the length of the string is 0.5m, what is the range of the in the piano string? μ
he wave equation of a stretched string can be written as, J²y μ J²y дх2 Tat² (a) Define each variable and identify what the wave speed is on the string? (b) The most general solution, = y(x, t) = A cos(kx − wt) + B sin(kx — wt) show that is is a solution and that for a point of fixed x on the string that that particle experiences simple harmonic motion. Sketch for this particle how y, y and y vary with time. = (c) The two ends of the string are now fixed such that y 0 when x = 0 and x = L. With these boundary conditions, what are the allowed vibrations on the string? Sketch the first three modes and list their \, v, k and w. (d) The highest and lowest frequencies on a piano are 4186.01 Hz and 27.5Hz, given that piano string has a typical tension of 700N and assuming the length of the string is 0.5m, what is the range of the in the piano string? μ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 6 images