He wants to determine if customers spending is different from the national average of $25.12 per visit (with population standard deviation of $10). He selects a random sample of customers during a certain week and records the results. The same week her colleague selects a random sample of the nearby McDonalds customers and records their spending. A. Conduct hypothesis test and determine the p-value. Enter the p-value below. For this question only, you can assume the population standard deviation is $10. B. Determine the critical value used when testing the hypothesis that McDonalds customers spend less than the national average at the 10% level of significance. For this question only, you can assume the population standard deviation is known. C. If we wished to create a confidence interval for the true mean customer spend for the specialty coffee shop that has a sampling error of $1.50 at the 10% significance level, what sample size should we use? For this question only, assume the specialty coffee shop population variance is exactly equal to that of your sample. Record Specialty McDonalds 1 $ 15.10 $ 36.67 2 $ 23.91 $ 22.20 3 $ 34.16 $ 14.12 4 $ 30.01 $ 17.34 5 $ 26.04 $ 14.21 6 $ 6.73 $ 14.91 7 $ 32.86 $ 5.25 8 $ 49.74 $ 13.13 9 $ 13.22 $ 7.44 10 $ 13.94 $ 5.34 11 $ 46.35 $ 21.85 12 $ 42.05 $ 43.59 13 $ 33.44 $ 17.07 14 $ 42.31 $ 9.32 15 $ 34.30 $ 22.84 16 $ 33.59 $ 24.94 17 $ 16.03 $ 42.77 18 $ 11.03 $ 14.98 19 $ 25.74 $ 17.46 20 $ 27.47 $ 19.36 21 $ 25.13 $ 21.09 22 $ 13.49 $ 32.61 23 $ 36.13 $ 34.17 24 $ 37.28 $ 34.85 25 $ 33.51 $ 15.09 26 $ 40.29 $ 22.40 27 $ 20.76 $ 11.94 28 $ 34.17 $ 36.86 29 $ 41.93 $ 18.87 30 $ 9.83 $ 40.06 31 $ 40.49 $ 17.87 32 $ 28.99 $ 5.93 33 $ 12.66 $ 29.13 34 $ 43.77 $ 43.96 35 $ 6.52 $ 35.13 36 $ 17.76 $ 21.72 37 $ 13.58 $ 36.95 38 $ 21.58 $ 30.82 39 $ 43.10 $ 36.80 40 $ 49.55 $ 33.09 41 $ 36.30 $ 40.22 42 $ 24.15 $ 39.36 43 $ 15.31 $ 35.12 44 $ 17.73 $ 2.39 45 $ 42.69 $ 2.78 46 $ 5.96 $ 27.05 47 $ 43.51 $ 12.65 48 $ 41.02 $ 11.49 49 $ 9.16 $ 2.57 50 $ 49.02 $ 15.97 51 $ 10.94 $ 22.70 52 $ 44.12 $ 21.68 53 $ 30.03 $ 28.40 54 $ 37.00 $ 15.33 55 $ 37.88 $ 29.63 56 $ 13.63 $ 41.48 57 $ 36.69 $ 14.14 58 $ 42.50 $ 46.42 59 $ 44.41 $ 46.26 60 $ 6.79 $ 46.33 61 $ 20.02 $ 35.95 62 $ 5.51 $ 37.43
im stucked on this question. please help me solve it thanks
He wants to determine if customers spending is different from the national average of $25.12 per visit (with population standard deviation of $10). He selects a random sample of customers during a certain week and records the results.
The same week her colleague selects a random sample of the nearby McDonalds customers and records their spending.
A. Conduct hypothesis test and determine the p-value. Enter the p-value below.
For this question only, you can assume the population standard deviation is $10.
B. Determine the critical value used when testing the hypothesis that McDonalds customers spend less than the national average at the 10% level of significance.
For this question only, you can assume the population standard deviation is known.
C. If we wished to create a confidence interval for the true mean customer spend for the specialty coffee shop that has a sampling error of $1.50 at the 10% significance level, what
For this question only, assume the specialty coffee shop population variance is exactly equal to that of your sample.
Record | Specialty | McDonalds |
1 | $ 15.10 | $ 36.67 |
2 | $ 23.91 | $ 22.20 |
3 | $ 34.16 | $ 14.12 |
4 | $ 30.01 | $ 17.34 |
5 | $ 26.04 | $ 14.21 |
6 | $ 6.73 | $ 14.91 |
7 | $ 32.86 | $ 5.25 |
8 | $ 49.74 | $ 13.13 |
9 | $ 13.22 | $ 7.44 |
10 | $ 13.94 | $ 5.34 |
11 | $ 46.35 | $ 21.85 |
12 | $ 42.05 | $ 43.59 |
13 | $ 33.44 | $ 17.07 |
14 | $ 42.31 | $ 9.32 |
15 | $ 34.30 | $ 22.84 |
16 | $ 33.59 | $ 24.94 |
17 | $ 16.03 | $ 42.77 |
18 | $ 11.03 | $ 14.98 |
19 | $ 25.74 | $ 17.46 |
20 | $ 27.47 | $ 19.36 |
21 | $ 25.13 | $ 21.09 |
22 | $ 13.49 | $ 32.61 |
23 | $ 36.13 | $ 34.17 |
24 | $ 37.28 | $ 34.85 |
25 | $ 33.51 | $ 15.09 |
26 | $ 40.29 | $ 22.40 |
27 | $ 20.76 | $ 11.94 |
28 | $ 34.17 | $ 36.86 |
29 | $ 41.93 | $ 18.87 |
30 | $ 9.83 | $ 40.06 |
31 | $ 40.49 | $ 17.87 |
32 | $ 28.99 | $ 5.93 |
33 | $ 12.66 | $ 29.13 |
34 | $ 43.77 | $ 43.96 |
35 | $ 6.52 | $ 35.13 |
36 | $ 17.76 | $ 21.72 |
37 | $ 13.58 | $ 36.95 |
38 | $ 21.58 | $ 30.82 |
39 | $ 43.10 | $ 36.80 |
40 | $ 49.55 | $ 33.09 |
41 | $ 36.30 | $ 40.22 |
42 | $ 24.15 | $ 39.36 |
43 | $ 15.31 | $ 35.12 |
44 | $ 17.73 | $ 2.39 |
45 | $ 42.69 | $ 2.78 |
46 | $ 5.96 | $ 27.05 |
47 | $ 43.51 | $ 12.65 |
48 | $ 41.02 | $ 11.49 |
49 | $ 9.16 | $ 2.57 |
50 | $ 49.02 | $ 15.97 |
51 | $ 10.94 | $ 22.70 |
52 | $ 44.12 | $ 21.68 |
53 | $ 30.03 | $ 28.40 |
54 | $ 37.00 | $ 15.33 |
55 | $ 37.88 | $ 29.63 |
56 | $ 13.63 | $ 41.48 |
57 | $ 36.69 | $ 14.14 |
58 | $ 42.50 | $ 46.42 |
59 | $ 44.41 | $ 46.26 |
60 | $ 6.79 | $ 46.33 |
61 | $ 20.02 | $ 35.95 |
62 | $ 5.51 | $ 37.43 |
Step by step
Solved in 5 steps with 19 images