H.W. 3 In a single-heater regenerative cycle the steam enters the turbine at 30 bar, 400°C and the exhaust pressure is 0.10 bar. The feed water heater is a direct contact type which operates at 5 bar. Find : (i) The efficiency and the steam rate of the cycle. (ii) The increase in mean temperature of heat addition, efficiency and steam rate as compared to the Rankine cycle (without regeneration). Pump work may be neglected.
H.W. 3 In a single-heater regenerative cycle the steam enters the turbine at 30 bar, 400°C and the exhaust pressure is 0.10 bar. The feed water heater is a direct contact type which operates at 5 bar. Find : (i) The efficiency and the steam rate of the cycle. (ii) The increase in mean temperature of heat addition, efficiency and steam rate as compared to the Rankine cycle (without regeneration). Pump work may be neglected.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
I need the answer as soon as possible

Transcribed Image Text:H.W. 3 In a single-heater regenerative cycle the steam enters the turbine at 30 bar,
400°C and the exhaust pressure is 0.10 bar. The feed water heater is a direct
contact type which operates at 5 bar. Find :
(i) The efficiency and the steam rate of the cycle.
(ii) The increase in mean temperature of heat addition, efficiency and steam rate as
compared to the Rankine cycle (without regeneration).
Pump work may be neglected.
Answers: (i) Efficiency of cycle= 36.08%.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY