H.W (1) Find Laplace transform for the following function; 1-f (t)=t sin at 2-f (t) =t coshat 4-f (t)=e" sin 4t 5-f (t) = sin 2t –t’e" 5-Ssint. -2r 3-f (t) =t2 cos 2t 6- [sint dt (2) Find Inverse Laplace transform for; 1 1-F(s)= 4-F(s) = %3D s (s +1) s'(s +4) 3 2-F(s) = 5-F(6) =" ) | %3D 2. s+4 S+1 3 3- F(s)= s(s? +16

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
H.W Problems P. 241 " Wylie"
H.W (1) Find Laplace transform for the following function;
1-f (t) =t sin at
2-f (t) =t coshat
4-f (t) =e" sin 4t
5-f (t)= sin 2t –t'e"
3-f (t)=t² cos2t
6- Ssint dt
(2) Find Inverse Laplace transform for;
1
1-F(s)=-
s (s +1)
4-F(s) =
,2
s (s +4)
5-F(6) =)
3
1
(s) =
s -1
2-F(s) =-
2
s+4
S
+
3
3- F(s) =
s(s* +16)
2
Transcribed Image Text:H.W Problems P. 241 " Wylie" H.W (1) Find Laplace transform for the following function; 1-f (t) =t sin at 2-f (t) =t coshat 4-f (t) =e" sin 4t 5-f (t)= sin 2t –t'e" 3-f (t)=t² cos2t 6- Ssint dt (2) Find Inverse Laplace transform for; 1 1-F(s)=- s (s +1) 4-F(s) = ,2 s (s +4) 5-F(6) =) 3 1 (s) = s -1 2-F(s) =- 2 s+4 S + 3 3- F(s) = s(s* +16) 2
Expert Solution
steps

Step by step

Solved in 7 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,