+ Gx (V x F) i.e. V · (F × G) =G (V × F) – F (Vx G) (5) div (F x G) = G (curl F) – F (curl G) (6) curl (F x G) = F (div G) – G (div F) + (G - V) F - (F . V) G Vx (Fx G) = F (V · G) – G (V · F) + (G · V) F – (F - V) G %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve only 5th and 5th
DEL APPLIED TO PRODUCTS OF POINT FUNCTIONS
To prove that
(1) grad (fg) = f (grad g) +g (grad A)
(2) div (f G) = (grad f) · G+f (div G)
(3) curl (f G) = (grad f) x G +f (curl G)
(4) grad (F G) = (F - V) G + (G. V) F + F x curl G+ Gx curl F
i.e. V (fg) = f Vg +gVf.
i.e. V (f G) = Vf · G +fV · G
i.e. V x (f G) = Vf× G + f V x G
%3D
%3D
V (F . G) = (F . V) G + (G V) F + F x (V × G) +G × (V × F)
%3D
i.e. V. (F x G) =G· (V × F) – F (V x G)
(5) div (F x G) = G (curl F) – F (curl G)
(6) curl (F x G) = F (div G) – G (div F) + (G · V) F – (F - V) G
V x (F x G) = F (V · G) – G (V · F) + (G - V) F – (F. V) G
%3D
%3D
|
%3D
Transcribed Image Text:DEL APPLIED TO PRODUCTS OF POINT FUNCTIONS To prove that (1) grad (fg) = f (grad g) +g (grad A) (2) div (f G) = (grad f) · G+f (div G) (3) curl (f G) = (grad f) x G +f (curl G) (4) grad (F G) = (F - V) G + (G. V) F + F x curl G+ Gx curl F i.e. V (fg) = f Vg +gVf. i.e. V (f G) = Vf · G +fV · G i.e. V x (f G) = Vf× G + f V x G %3D %3D V (F . G) = (F . V) G + (G V) F + F x (V × G) +G × (V × F) %3D i.e. V. (F x G) =G· (V × F) – F (V x G) (5) div (F x G) = G (curl F) – F (curl G) (6) curl (F x G) = F (div G) – G (div F) + (G · V) F – (F - V) G V x (F x G) = F (V · G) – G (V · F) + (G - V) F – (F. V) G %3D %3D | %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,