гтula to 13. (a) sin(77/12) (b) cos(/12) (c) tan(7/12) 14. (a) sin(/8) In Exercises 35–50, TT (b) cos(7/8) (c) tan(/8) TT 35. cos 2s = 1-t 15. (a) sin 105° (b) cos 105° 7T 16. (a) sin 165° 37. cos 0 =2 cos (b) cos 165° (c) tan 165° sin 20 38. sin 0 Cos 2 (c) tan 105° CoSe 3-4 39. sin* 0 = In Exercises 17–24, refer to the two triangles and compute the %3D 40. sin 30 = 3 sin quantities indicated. 2 ta 41. sin 20 = 43. sin 20 = 2 sin %3D 3 44. cot 0 = t sin 1 + tan(0/2) 45. 4. 24 1- tan(0/2) (b) cos 20 17. (a) sin 20 18. (a) sin 2t 19. (a) sin 26 20. (a) sin 2s 21. (a) sin(0/2) 22. (a) sin(s/2) 23. (a) sin(B/2) 24. (a) sin(t/2) 46. tan 0 + cot 0 (c) tan 20 (c) tan 2t (c) tan 28 (c) tan 2s (c) tan(0/2) (c) tan(s/2) (c) tan(B/2) (c) tan(t/2) (b) cos 2t (b) cos 2B 47. 2 sin?(45° – 48. (sin 0 - cos 49.1+tan 0 tan (b) cos 2s (b) cos(0/2) (b) cos(s/2) (b) cos(B/2) (b) cos(t/2) 50. tan( + 0)- 51. If tan a = 1/ that 0

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Topic Video
Question

#25

гтula
to
13. (a) sin(77/12)
(b) cos(/12)
(c) tan(7/12)
14. (a) sin(/8)
In Exercises 35–50,
TT
(b) cos(7/8)
(c) tan(/8)
TT
35. cos 2s =
1-t
15. (a) sin 105°
(b) cos 105°
7T
16. (a) sin 165°
37. cos 0 =2 cos
(b) cos 165°
(c) tan 165°
sin 20
38.
sin 0
Cos 2
(c) tan 105°
CoSe
3-4
39. sin* 0 =
In Exercises 17–24, refer to the two triangles and compute the
%3D
40. sin 30 = 3 sin
quantities indicated.
2 ta
41. sin 20 =
43. sin 20 = 2 sin
%3D
3
44. cot 0 =
t
sin
1 + tan(0/2)
45.
4.
24
1- tan(0/2)
(b) cos 20
17. (a) sin 20
18. (a) sin 2t
19. (a) sin 26
20. (a) sin 2s
21. (a) sin(0/2)
22. (a) sin(s/2)
23. (a) sin(B/2)
24. (a) sin(t/2)
46. tan 0 + cot 0
(c) tan 20
(c) tan 2t
(c) tan 28
(c) tan 2s
(c) tan(0/2)
(c) tan(s/2)
(c) tan(B/2)
(c) tan(t/2)
(b) cos 2t
(b) cos 2B
47. 2 sin?(45° –
48. (sin 0 - cos
49.1+tan 0 tan
(b) cos 2s
(b) cos(0/2)
(b) cos(s/2)
(b) cos(B/2)
(b) cos(t/2)
50. tan( + 0)-
51. If tan a = 1/
that 0<a <
tan(a + B).
%3D
52. Let z = tan 6
In Exercises 25-28, use the given information to express sin 20
and cos 20 in terms of x.
(a) cos 20 =
(b) Explain
25. x = 5 sin 0 with 0<0 <
26. x = V2 cos 0 with 0<0 <
27. x-1 2 sin 0 with 0<0 <5
28. x + 1 = 3 sin 0 with <0 <T
cos 20 a
53. (a) Use a ca
a root o
(b) Use the
Exampl
In Exercises 29-32, express each quantity in a form that
does not involve powers of the trigonometric functions
(as in Example 4).
root of
Hint: I
Transcribed Image Text:гтula to 13. (a) sin(77/12) (b) cos(/12) (c) tan(7/12) 14. (a) sin(/8) In Exercises 35–50, TT (b) cos(7/8) (c) tan(/8) TT 35. cos 2s = 1-t 15. (a) sin 105° (b) cos 105° 7T 16. (a) sin 165° 37. cos 0 =2 cos (b) cos 165° (c) tan 165° sin 20 38. sin 0 Cos 2 (c) tan 105° CoSe 3-4 39. sin* 0 = In Exercises 17–24, refer to the two triangles and compute the %3D 40. sin 30 = 3 sin quantities indicated. 2 ta 41. sin 20 = 43. sin 20 = 2 sin %3D 3 44. cot 0 = t sin 1 + tan(0/2) 45. 4. 24 1- tan(0/2) (b) cos 20 17. (a) sin 20 18. (a) sin 2t 19. (a) sin 26 20. (a) sin 2s 21. (a) sin(0/2) 22. (a) sin(s/2) 23. (a) sin(B/2) 24. (a) sin(t/2) 46. tan 0 + cot 0 (c) tan 20 (c) tan 2t (c) tan 28 (c) tan 2s (c) tan(0/2) (c) tan(s/2) (c) tan(B/2) (c) tan(t/2) (b) cos 2t (b) cos 2B 47. 2 sin?(45° – 48. (sin 0 - cos 49.1+tan 0 tan (b) cos 2s (b) cos(0/2) (b) cos(s/2) (b) cos(B/2) (b) cos(t/2) 50. tan( + 0)- 51. If tan a = 1/ that 0<a < tan(a + B). %3D 52. Let z = tan 6 In Exercises 25-28, use the given information to express sin 20 and cos 20 in terms of x. (a) cos 20 = (b) Explain 25. x = 5 sin 0 with 0<0 < 26. x = V2 cos 0 with 0<0 < 27. x-1 2 sin 0 with 0<0 <5 28. x + 1 = 3 sin 0 with <0 <T cos 20 a 53. (a) Use a ca a root o (b) Use the Exampl In Exercises 29-32, express each quantity in a form that does not involve powers of the trigonometric functions (as in Example 4). root of Hint: I
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning