Group A 1 There are three factories on the Momiss River (1, 2, and 3). Each emits two types of pollutants (1 and 2) into the river. If the waste from each factory is processed, the pollution in the river can be reduced. It costs $15 to process a ton of factory 1 waste, and each ton processed reduces the amount of pollutant 1 by 0.10 ton and the amount of pollutant 2 by 0.45 ton. It costs $10 to process a ton of factory 2 waste, and each ton processed will reduce the amount of pollutant 1 by 0.20 ton and the amount of pollutant 2 by 0.25 ton. It costs $20 to process a ton of factory 3 waste, and each ton processed will reduce the amount of pollutant 1 by 0.40 ton and the amount of pollutant 2 by 0.30 ton. The state wants to reduce the amount of pollutant 1 in the river by at least 30 tons and the amount of pollutant 2 in the river by at least 40 tons. Formulate an LP that will minimize the cost of reducing pollution by the desired amounts. Do you think that the LP assumptions (Proportionality, Additivity, Divisibility, and Certainty) are reasonable for this problem?
Group A 1 There are three factories on the Momiss River (1, 2, and 3). Each emits two types of pollutants (1 and 2) into the river. If the waste from each factory is processed, the pollution in the river can be reduced. It costs $15 to process a ton of factory 1 waste, and each ton processed reduces the amount of pollutant 1 by 0.10 ton and the amount of pollutant 2 by 0.45 ton. It costs $10 to process a ton of factory 2 waste, and each ton processed will reduce the amount of pollutant 1 by 0.20 ton and the amount of pollutant 2 by 0.25 ton. It costs $20 to process a ton of factory 3 waste, and each ton processed will reduce the amount of pollutant 1 by 0.40 ton and the amount of pollutant 2 by 0.30 ton. The state wants to reduce the amount of pollutant 1 in the river by at least 30 tons and the amount of pollutant 2 in the river by at least 40 tons. Formulate an LP that will minimize the cost of reducing pollution by the desired amounts. Do you think that the LP assumptions (Proportionality, Additivity, Divisibility, and Certainty) are reasonable for this problem?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Group A
1 There are three factories on the Momiss River (1, 2, and
3). Each emits two types of pollutants (1 and 2) into the
river. If the waste from each factory is processed, the
pollution in the river can be reduced. It costs $15 to process
a ton of factory 1 waste, and each ton processed reduces the
amount of pollutant 1 by 0.10 ton and the amount of
pollutant 2 by 0.45 ton. It costs $10 to process a ton of
factory 2 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.20 ton and the amount of
pollutant 2 by 0.25 ton. It costs $20 to process a ton of
factory 3 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.40 ton and the amount of
pollutant 2 by 0.30 ton. The state wants to reduce the amount
of pollutant 1 in the river by at least 30 tons and the amount
of pollutant 2 in the river by at least 40 tons. Formulate an
LP that will minimize the cost of reducing pollution by the
desired amounts. Do you think that the LP assumptions
(Proportionality, Additivity, Divisibility, and Certainty) are
reasonable for this problem?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F39ae8fc3-b01a-4d1e-9426-335d4be91861%2F45b35b1e-d6d6-471a-b7dd-79af5a27aab1%2Fba4xclt.png&w=3840&q=75)
Transcribed Image Text:Group A
1 There are three factories on the Momiss River (1, 2, and
3). Each emits two types of pollutants (1 and 2) into the
river. If the waste from each factory is processed, the
pollution in the river can be reduced. It costs $15 to process
a ton of factory 1 waste, and each ton processed reduces the
amount of pollutant 1 by 0.10 ton and the amount of
pollutant 2 by 0.45 ton. It costs $10 to process a ton of
factory 2 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.20 ton and the amount of
pollutant 2 by 0.25 ton. It costs $20 to process a ton of
factory 3 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.40 ton and the amount of
pollutant 2 by 0.30 ton. The state wants to reduce the amount
of pollutant 1 in the river by at least 30 tons and the amount
of pollutant 2 in the river by at least 40 tons. Formulate an
LP that will minimize the cost of reducing pollution by the
desired amounts. Do you think that the LP assumptions
(Proportionality, Additivity, Divisibility, and Certainty) are
reasonable for this problem?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)