> > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60 In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 16 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

I need help with this please.Make sure to round to four decimal places in each part

> > >
Binomial Probability Sums b(z;n,p)
1-0
P
0.20
15
2
0.8159 0.3980 0.2361
3 0.9444 0.6482 0.4613
4
12 " 0.10
0.25 0.30 0.40 0.50
0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000
1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000
0.1268 0.0271 0.0037 0.0003 0.0000
0.2969 0.0905 0.0176 0.0019 0.0001
0.5155 0.2173 0.0592 0.0093 0.0007
0.60
0.70
0.80
0.90
0.0000
5
0.1509 0.0338 0.0037 0.0001
6
0.9873 0.8358 0.6865
0.9978 0.9389 0.8516 0.7216 0.4032
0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008
7 1.0000
0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000
0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003
0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022
1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642
0.0127
1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556
1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841
1.0000 0.9995 0.9948 0.9647 0.8329 0.4510
1.0000 0.9995 0.9953 0.9648 0.7941
1.0000 1.0000 1.0000 1.0000
8
9
10
11
12
13
14
15
16 0 0.1853
1
0.0281 0.0100 0.0033 0.0003 0.0000
0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000
2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021
0.0001
0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000
Binomial Probability Sums
b(x;n,p)
P
" "
0.10
0.20 0.25 0.30 0.40 0.50
12 0 0.2824
1
0.0687 0.0317 0.0138 0.0022 0.0002
0.6590 0.2749 0.1584 0.0850 0.0196 0.0032
0.60 0.70
0.0000
0.80 0.90
2
0.8891 0.5583 0.3907 0.2528 0.0834 0.0193
3
4
0.9744 0.7946 0.6488 0.4925 0.2253
0.9957 0.9274 0.8424
0.7237 0.4382
5
0.9995 0.9806 0.9456
6 0.9999 0.9961 0.9857
7
0.8822
0.9614
0.9905
8
9
10
1.0000
11
12
0.0003 0.0000
0.0028 0.0002 0.0000
0.0153 0.0017 0.0001
0.0573 0.0095 0.0006 0.0000
0.1582 0.0386 0.0039 0.0001
0.3348 0.1178 0.0194 0.0005
1.0000 0.9994 0.9972
0.2763 0.0726 0.0043
0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256
1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109
0.9997 0.9968 0.9804 0.9150 0.7251 0.3410
1.0000 0.9998 0.9978
0.9313 0.7176
0.9862
1.0000 1.0000 1.0000 1.0000 1.0000
0.0730
0.1938
0.6652 0.3872
0.8418 0.6128
0.9427 0.8062 0.5618
1
2
3
13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000
0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000
0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001
0.9658 0.7473 0.5843
0.4206 0.1686 0.0461
4 0.9935 0.9009 0.7940
5
0.9991 0.9700 0.9198
6
0.9999 0.9930 0.9757
7
1.0000
8
9
10
11
12
13
14 0 0.2288
0.0440 0.0178
1 0.5846 0.1979 0.1010
2 0.8416 0.4481
3 0.9559 0.6982
0.6543 0.3530 0.1334
0.8346 0.5744 0.2905
0.0078 0.0007 0.0000
0.0321 0.0040 0.0002
0.0977 0.0182 0.0012 0.0000
0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001
0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009
0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065
1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342
1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339
1.0000 0.9999 0.9983
0.9874 0.9363 0.7664 0.3787
1.0000
0.9999 0.9987 0.9903 0.9450 0.7458
1.0000 1.0000 1.0000 1.0000 1.0000
0.0068 0.0008 0.0001 0.0000
0.0475 0.0081 0.0009 0.0001
0.2811 0.1608 0.0398 0.0065 0.0006 0.0000
0.5213 0.3552 0.1243 0.0287
0.0039 0.0002
0.0000
0.0002
0.0015
4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000
5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004
0.9884 0.9617
0.3953
0.0024
0.9998
0.9067 0.6925
0.1501 0.0315
1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116
0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439
1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092
1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441
1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584
0.9999 0.9991 0.9919 0.9525 0.8021 0.4154
1.0000 0.9999 0.9992 0.9932 0,9560 0.7712
1.0000 1.0000 1.0000 1.0000 1.0000
6
7
8
9
10
11
12
13
14
" 0.10
0.20
0.25
0.30
0.40
0.50
0.60 0.70
0.80 0.90
95.5%
| -| -
C
3
4
0.9830 0.7982 0.6302
0.4499 0.1666 0.0384 0.0049 0.0003
5
0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000
7
8
9
10
11
12
13
14
15
16
12 "
0.10
0.20
0.25
0.30
0.40
6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002
0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000
1.0000 0.9985 0.9925 0.9743 0.8577
0.0070
0.5982 0.2839 0.0744
0.0001
0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005
1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033
1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170
1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684
0.9999 0.9979 0.9817 0.9006 0.6482 0.2108
1.0000 0.9997 0.9967 0.9739 0.8593 0.4853
1.0000 0.9997 0.9967 0.9719 0.8147
1.0000 1.0000 1.0000 1.0000
0.70 0.80 0.90
0.50
0.60
Transcribed Image Text:> > > Binomial Probability Sums b(z;n,p) 1-0 P 0.20 15 2 0.8159 0.3980 0.2361 3 0.9444 0.6482 0.4613 4 12 " 0.10 0.25 0.30 0.40 0.50 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 0.1268 0.0271 0.0037 0.0003 0.0000 0.2969 0.0905 0.0176 0.0019 0.0001 0.5155 0.2173 0.0592 0.0093 0.0007 0.60 0.70 0.80 0.90 0.0000 5 0.1509 0.0338 0.0037 0.0001 6 0.9873 0.8358 0.6865 0.9978 0.9389 0.8516 0.7216 0.4032 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 8 9 10 11 12 13 14 15 16 0 0.1853 1 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000 Binomial Probability Sums b(x;n,p) P " " 0.10 0.20 0.25 0.30 0.40 0.50 12 0 0.2824 1 0.0687 0.0317 0.0138 0.0022 0.0002 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.60 0.70 0.0000 0.80 0.90 2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 3 4 0.9744 0.7946 0.6488 0.4925 0.2253 0.9957 0.9274 0.8424 0.7237 0.4382 5 0.9995 0.9806 0.9456 6 0.9999 0.9961 0.9857 7 0.8822 0.9614 0.9905 8 9 10 1.0000 11 12 0.0003 0.0000 0.0028 0.0002 0.0000 0.0153 0.0017 0.0001 0.0573 0.0095 0.0006 0.0000 0.1582 0.0386 0.0039 0.0001 0.3348 0.1178 0.0194 0.0005 1.0000 0.9994 0.9972 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9313 0.7176 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000 0.0730 0.1938 0.6652 0.3872 0.8418 0.6128 0.9427 0.8062 0.5618 1 2 3 13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 4 0.9935 0.9009 0.7940 5 0.9991 0.9700 0.9198 6 0.9999 0.9930 0.9757 7 1.0000 8 9 10 11 12 13 14 0 0.2288 0.0440 0.0178 1 0.5846 0.1979 0.1010 2 0.8416 0.4481 3 0.9559 0.6982 0.6543 0.3530 0.1334 0.8346 0.5744 0.2905 0.0078 0.0007 0.0000 0.0321 0.0040 0.0002 0.0977 0.0182 0.0012 0.0000 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 1.0000 1.0000 1.0000 1.0000 1.0000 0.0068 0.0008 0.0001 0.0000 0.0475 0.0081 0.0009 0.0001 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0002 0.0015 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.9884 0.9617 0.3953 0.0024 0.9998 0.9067 0.6925 0.1501 0.0315 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 1.0000 0.9999 0.9992 0.9932 0,9560 0.7712 1.0000 1.0000 1.0000 1.0000 1.0000 6 7 8 9 10 11 12 13 14 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 95.5% | -| - C 3 4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003 5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 7 8 9 10 11 12 13 14 15 16 12 " 0.10 0.20 0.25 0.30 0.40 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.0070 0.5982 0.2839 0.0744 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853 1.0000 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.70 0.80 0.90 0.50 0.60
In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run
without a blowout. Of the next 16 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4
have blowouts, and (c) more than 5 have blowouts.
Click here to view page 1 of the table of binomial probability sums.
Click here to view page 2 of the table of binomial probability sums.
(a) The probability that from 2 to 6 trucks have blowouts is
(Round to four decimal places as needed.)
(b) The probability that fewer than 4 trucks have blowouts is
(Round to four decimal places as needed.)
(c) The probability that more than 5 trucks have blowouts is
(Round to four decimal places as needed.)
Transcribed Image Text:In testing a certain kind or truck tire over rugged terrain, it is found that 20% of the trucks fail to complete the test run without a blowout. Of the next 16 trucks tested, find the probability that (a) from 2 to 6 have blowouts, (b) fewer than 4 have blowouts, and (c) more than 5 have blowouts. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. (a) The probability that from 2 to 6 trucks have blowouts is (Round to four decimal places as needed.) (b) The probability that fewer than 4 trucks have blowouts is (Round to four decimal places as needed.) (c) The probability that more than 5 trucks have blowouts is (Round to four decimal places as needed.)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON