> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional area of the core is 12cm?, the relative permeability of the core is 4000 and the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the effective cross-sectional area of the air gap by 5 percent. Given this information. Find the total reluctance of the flux path (iron plus air gap) and the current required to produce a flux density of 0.5 T in the air gap. N-400 tuma 0.05 cm A-12 em l-40 cem Figure 1

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question
> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a
small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional
area of the core is 12cm2, the relative permeability of the core is 4000 and the coil of
wire on the core has 400 turns. Assume that fringing in the air gap increases the
effective cross-sectional area of the air gap by 5 percent. Given this information.
Find the total reluctance of the flux path (iron plus air gap) and the current
required to produce a flux density of 0.5 T in the air gap.
N=400
tums
0.05 cm
A=12 cm?
le-40 cm
Figure 1
Transcribed Image Text:> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional area of the core is 12cm2, the relative permeability of the core is 4000 and the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the effective cross-sectional area of the air gap by 5 percent. Given this information. Find the total reluctance of the flux path (iron plus air gap) and the current required to produce a flux density of 0.5 T in the air gap. N=400 tums 0.05 cm A=12 cm? le-40 cm Figure 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fault analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,