Graph the hyperbola by writing the equation in standard form. Label the center, vertices and sketch the asymptotes. x2 – 4y2 12x 16y + 16 = 0 %3D -
Graph the hyperbola by writing the equation in standard form. Label the center, vertices and sketch the asymptotes. x2 – 4y2 12x 16y + 16 = 0 %3D -
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![## Graphing Hyperbolas in Standard Form
### Problem Statement
Graph the hyperbola by writing the equation in standard form. Label the center, vertices, and sketch the asymptotes.
Given equation:
\[ x^2 - 4y^2 - 12x - 16y + 16 = 0 \]
### Instructions:
1. **Rewrite the Equation in Standard Form:**
- Completing the square for \(x\): \(x^2 - 12x\)
\[
x^2 - 12x + 36 \quad (\text{adding} \ 36)
\]
- Completing the square for \(y\): \(-4(y^2 + 4y)\)
\[
-4(y^2 + 4y + 4) = -4(y + 2)^2 \quad (\text{adding} \ 16 \ \text{but since it's multiplied by -4, we actually subtract} 64)
\]
- Rewrite the equation:
\[
(x - 6)^2 - 4(y + 2)^2 = 64 \ (\text{transferring added/subtracted constants appropriately})
\]
- Divide by 64 to get it in standard form:
\[
\frac{(x - 6)^2}{64} - \frac{(y + 2)^2}{16} = 1
\]
2. **Identifying Key Components:**
- Center: \((6, -2)\)
- Transverse axis along \(x\):
- Vertices: \((6 + 8, -2) \ \text{and} \ (6 - 8, -2)\) or \((14, -2) \ \text{and} \ (-2, -2)\)
- Asymptotes:
\[
y + 2 = \pm \frac{4}{8}(x - 6) \quad (\text{or more simplified as} \ y + 2 = \pm \frac{1}{2}(x - 6))
\]
### Graph Explanation:
- A grid with axes labeled from -10 to 10 both on x and y axes.
- The hyperbola’s center \((6, -2)\) will be marked.
- Vertices](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5c941f29-ddef-4885-9d8b-99e8246804cb%2F34496278-420b-4242-ba1f-07af38480f56%2Fx020bh.jpeg&w=3840&q=75)
Transcribed Image Text:## Graphing Hyperbolas in Standard Form
### Problem Statement
Graph the hyperbola by writing the equation in standard form. Label the center, vertices, and sketch the asymptotes.
Given equation:
\[ x^2 - 4y^2 - 12x - 16y + 16 = 0 \]
### Instructions:
1. **Rewrite the Equation in Standard Form:**
- Completing the square for \(x\): \(x^2 - 12x\)
\[
x^2 - 12x + 36 \quad (\text{adding} \ 36)
\]
- Completing the square for \(y\): \(-4(y^2 + 4y)\)
\[
-4(y^2 + 4y + 4) = -4(y + 2)^2 \quad (\text{adding} \ 16 \ \text{but since it's multiplied by -4, we actually subtract} 64)
\]
- Rewrite the equation:
\[
(x - 6)^2 - 4(y + 2)^2 = 64 \ (\text{transferring added/subtracted constants appropriately})
\]
- Divide by 64 to get it in standard form:
\[
\frac{(x - 6)^2}{64} - \frac{(y + 2)^2}{16} = 1
\]
2. **Identifying Key Components:**
- Center: \((6, -2)\)
- Transverse axis along \(x\):
- Vertices: \((6 + 8, -2) \ \text{and} \ (6 - 8, -2)\) or \((14, -2) \ \text{and} \ (-2, -2)\)
- Asymptotes:
\[
y + 2 = \pm \frac{4}{8}(x - 6) \quad (\text{or more simplified as} \ y + 2 = \pm \frac{1}{2}(x - 6))
\]
### Graph Explanation:
- A grid with axes labeled from -10 to 10 both on x and y axes.
- The hyperbola’s center \((6, -2)\) will be marked.
- Vertices
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning