rom the following code make me a very nice company type interface describing an electrical machine company the code is from matlab :
from the following code make me a very nice company type interface describing an electrical machine company the code is from matlab :
function magneticFieldGUI
% Create the main figure
fig = uifigure('Name', 'Magnetic Field', 'Position', [100, 100, 800, 600]);
% Frequency and angle sliders
freqSlider = uislider(fig, 'Limits', [1 100], 'Value', 50, 'Position', [50 450 200 3]);
angleSlider = uislider(fig, 'Limits', [0 360], 'Value', 45, 'Position', [50 350 200 3]);
% Create labels for the sliders
freqLabel = uilabel(fig, 'Text', 'Frequency (Hz)', 'Position', [50 480 150 22]);
angleLabel = uilabel(fig, 'Text', 'Angle °', 'Position', [50 380 150 22]);
% Update button
updateButton = uibutton(fig, 'Text', 'Update Plots', 'Position', [170 230 150 30]);
updateButton.ButtonPushedFcn = @updatePlots;
axes1 = uiaxes(fig, 'Position', [300 100 400 300]);
axes2 = uiaxes(fig, 'Position', [300 400 400 150]);
function updatePlots(~, ~)
freq = freqSlider.Value;
angle_deg = angleSlider.Value;
angle_rad = deg2rad(angle_deg);
T = 1 / freq;
w = 2 * pi * freq;
n = 2;
t = 0:T/1200:n*T;
Baa = sin(w*t + angle_rad) .* (cos(0) + 1i*sin(0));
Bbb = sin(w*t - 2*pi/3 + angle_rad) .* (cos(2*pi/3) + 1i*sin(2*pi/3));
Bcc = sin(w*t + 2*pi/3 + angle_rad) .* (cos(-2*pi/3) + 1i*sin(-2*pi/3));
Bnet = Baa + Bbb + Bcc;
cla(axes1);
cla(axes2);
plot(axes1, real(Bnet), imag(Bnet), 'r');
hold(axes1, 'on');
plot(axes1, real(Baa), imag(Baa), 'c');
plot(axes1, real(Bbb), imag(Bbb), 'b');
plot(axes1, real(Bcc), imag(Bcc), 'm');
hold(axes1, 'off');
axis(axes1, 'equal');
plot(axes2, t, real(Baa), 'c');
hold(axes2, 'on');
plot(axes2, t, real(Bbb), 'b');
plot(axes2, t, real(Bcc), 'm');
plot(axes2, t, real(Bnet), 'r');
hold(axes2, 'off');
grid(axes2, 'on');
legend(axes2, 'Baa', 'Bbb', 'Bcc', 'Bnet');
xlabel(axes1, 'Flux Density (T)');
ylabel(axes1, 'Flux Density (T)');
title(axes1, 'Rotating Magnetic Field');
xlabel(axes2, 'Time (sec)');
ylabel(axes2, 'Flux Density (T)');
title(axes2, 'Magnetic Fields in Time Domain');
% Rotating magnetic field plot
subplot(1, 2, 1);
circle = 1.5 * (cos(w*t + angle_rad) + 1i*sin(w*t + angle_rad));
plot(axes1, real(circle), imag(circle), 'k', 'LineWidth', 2);
hold(axes1, 'on');
Baa_ref = 1.5 * (cos(angle_rad) + 1i*sin(angle_rad));
Bbb_ref = 1.5 * (cos(2*pi/3 + angle_rad) + 1i*sin(2*pi/3 + angle_rad));
Bcc_ref = 1.5 * (cos(-2*pi/3 + angle_rad) + 1i*sin(-2*pi/3 + angle_rad));
line(axes1, [0 real(Baa_ref)], [0 imag(Baa_ref)], 'Color', 'k', 'LineStyle', ':');
line(axes1, [0 real(Bbb_ref)], [0 imag(Bbb_ref)], 'Color', 'k', 'LineStyle', ':');
line(axes1, [0 real(Bcc_ref)], [0 imag(Bcc_ref)], 'Color', 'k', 'LineStyle', ':');
text(axes1, 1.6 * cos(angle_rad), 1.6 * sin(angle_rad), '\bfB_{aa}');
text(axes1, 1.6 * cos(2*pi/3 + angle_rad) - 0.2, 1.6 * sin(2*pi/3 + angle_rad) + 0.1, '\bfB_{bb}');
text(axes1, 1.6 * cos(-2*pi/3 + angle_rad) - 0.2, 1.6 * sin(-2*pi/3 + angle_rad), '\bfB_{cc}');
h1 = line(axes1, [0 real(Baa(1))], [0 imag(Baa(1))], 'Color', 'k', 'LineWidth', 2);
h2 = line(axes1, [0 real(Bbb(1))], [0 imag(Bbb(1))], 'Color', 'b', 'LineWidth', 2);
h3 = line(axes1, [0 real(Bcc(1))], [0 imag(Bcc(1))], 'Color', 'm', 'LineWidth', 2);
h4 = line(axes1, [0 real(Bnet(1))], [0 imag(Bnet(1))], 'Color', 'r', 'LineWidth', 2);
title(axes1, '\bfRotating Magnetic Field');
xlabel(axes1, '\bfFlux Density (T)');
ylabel(axes1, '\bfFlux Density (T)');
axis(axes1, 'square');
axis(axes1, [-2 2 -2 2]);
% Magnetic fields in time domain plot
subplot(1, 2, 2);
title(axes2, '\bfMagnetic Fields in Time Domain');
ylabel(axes2, '\bfFlux Density (T)');
xlabel(axes2, '\bfTime (sec)');
axis(axes2, [0 n*T -2 2]);
grid(axes2, 'on');
hold(axes2, 'on');
plot(axes2, t, real(Baa), 'c');
plot(axes2, t, real(Bbb), 'b');
plot(axes2, t, real(Bcc), 'm');
plot(axes2, t, real(Bnet), 'r');
legend(axes2, 'Baa', 'Bbb', 'Bcc', 'Bnet');
hold(axes2, 'off');
end
updatePlots(); % Update plots at the beginning
end
![](/static/compass_v2/shared-icons/check-mark.png)
The provided MATLAB code presents a graphical user interface (GUI) for visualizing and controlling magnetic fields in an electrical machine, specifically focusing on the concept of a rotating magnetic field. This interface is a valuable tool for engineers, researchers, and students in the field of electromagnetism, allowing them to explore and experiment with electromagnetic phenomena in real-time.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
good afternoon could you help me by modifying a code with a nicer interface and showing me lines of fields but please modify it yourself.
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)