Given x= what is the exact value of sin(2T-x)? 1 2 NI O 2 05/50 2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Question

Given \( x = \frac{\pi}{3} \), what is the exact value of \( \sin(2\pi - x) \)?

### Options

1. \( \boxed{\frac{1}{2}} \)

2. \( \boxed{-\frac{1}{2}} \)

3. \( \boxed{\frac{\sqrt{3}}{2}} \)

4. \( \boxed{-\frac{\sqrt{3}}{2}} \)

---

### Explanation

In this question, you need to determine the value of \( \sin(2\pi - x) \) given that \( x = \frac{\pi}{3} \).

### Strategy to Solve

1. **Understanding the Sine Function**
   - The sine function is periodic with a period of \( 2\pi \).
   - The sine of an angle \( 2\pi - x \) is the same as the sine of the angle \( -x \), and \(\sin(-x) = -\sin(x)\).

2. **Substituting the Given Value**
   - Given \( x = \frac{\pi}{3} \), substitute \( x \) into the expression to get \( \sin(2\pi - \frac{\pi}{3}) \).

3. **Simplifying the Argument**
   - Simplify \( 2\pi - \frac{\pi}{3} \):
     \[
     2\pi - \frac{\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3} = \frac{5\pi}{3}
     \]

4. **Using Sine Function Properties**
   - \(\sin(2\pi - x) = \sin(-x)\), and \(\sin(-x) = -\sin(x)\).

5. **Finding \(\sin(\frac{5\pi}{3})\)**
   - The angle \( \frac{5\pi}{3} \) in the unit circle is equivalent to \( -\frac{\pi}{3} \) because it completes one full cycle (i.e., \( 2\pi = \frac{6\pi}{3} \), so \( \frac{5\pi}{3} = 2\pi - \frac{\pi}{3}\)).

6. **Calculating the Sine
Transcribed Image Text:### Question Given \( x = \frac{\pi}{3} \), what is the exact value of \( \sin(2\pi - x) \)? ### Options 1. \( \boxed{\frac{1}{2}} \) 2. \( \boxed{-\frac{1}{2}} \) 3. \( \boxed{\frac{\sqrt{3}}{2}} \) 4. \( \boxed{-\frac{\sqrt{3}}{2}} \) --- ### Explanation In this question, you need to determine the value of \( \sin(2\pi - x) \) given that \( x = \frac{\pi}{3} \). ### Strategy to Solve 1. **Understanding the Sine Function** - The sine function is periodic with a period of \( 2\pi \). - The sine of an angle \( 2\pi - x \) is the same as the sine of the angle \( -x \), and \(\sin(-x) = -\sin(x)\). 2. **Substituting the Given Value** - Given \( x = \frac{\pi}{3} \), substitute \( x \) into the expression to get \( \sin(2\pi - \frac{\pi}{3}) \). 3. **Simplifying the Argument** - Simplify \( 2\pi - \frac{\pi}{3} \): \[ 2\pi - \frac{\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3} = \frac{5\pi}{3} \] 4. **Using Sine Function Properties** - \(\sin(2\pi - x) = \sin(-x)\), and \(\sin(-x) = -\sin(x)\). 5. **Finding \(\sin(\frac{5\pi}{3})\)** - The angle \( \frac{5\pi}{3} \) in the unit circle is equivalent to \( -\frac{\pi}{3} \) because it completes one full cycle (i.e., \( 2\pi = \frac{6\pi}{3} \), so \( \frac{5\pi}{3} = 2\pi - \frac{\pi}{3}\)). 6. **Calculating the Sine
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning