Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem Statement
Given the vector function \(\vec{r}(t) = \langle t, e^t, 10 \rangle\), find the tangential component of acceleration \(a_T\) when \(t = 7\).
---
### Solution
To find the tangential component of acceleration \(a_T\), we follow these steps:
1. **Compute the velocity vector \(\vec{v}(t)\):**
\[
\vec{v}(t) = \frac{d\vec{r}}{dt} = \left\langle \frac{d}{dt}(t), \frac{d}{dt}(e^t), \frac{d}{dt}(10) \right\rangle = \langle 1, e^t, 0 \rangle
\]
2. **Compute the acceleration vector \(\vec{a}(t)\):**
\[
\vec{a}(t) = \frac{d\vec{v}}{dt} = \left\langle \frac{d}{dt}(1), \frac{d}{dt}(e^t), \frac{d}{dt}(0) \right\rangle = \langle 0, e^t, 0 \rangle
\]
3. **Find the magnitude of the velocity vector \(|\vec{v}(t)|\):**
\[
|\vec{v}(t)| = \sqrt{ (1)^2 + (e^t)^2 + (0)^2 } = \sqrt{1 + e^{2t}}
\]
4. **Calculate the tangential component of acceleration \(a_T\):**
\[
a_T = \frac{\vec{v}(t) \cdot \vec{a}(t)}{|\vec{v}(t)|}
\]
Here, \(\vec{v}(t) \cdot \vec{a}(t)\) is the dot product of the velocity and acceleration vectors:
\[
\vec{v}(t) \cdot \vec{a}(t) = \langle 1, e^t, 0 \rangle \cdot \langle 0, e^t, 0 \rangle = 1 \cdot 0 + e^t \cdot](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe4962ae7-1cb2-4276-8f6a-b9f851b67289%2Fe1320306-c25b-41ae-a139-057598576334%2F1oq7465_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement
Given the vector function \(\vec{r}(t) = \langle t, e^t, 10 \rangle\), find the tangential component of acceleration \(a_T\) when \(t = 7\).
---
### Solution
To find the tangential component of acceleration \(a_T\), we follow these steps:
1. **Compute the velocity vector \(\vec{v}(t)\):**
\[
\vec{v}(t) = \frac{d\vec{r}}{dt} = \left\langle \frac{d}{dt}(t), \frac{d}{dt}(e^t), \frac{d}{dt}(10) \right\rangle = \langle 1, e^t, 0 \rangle
\]
2. **Compute the acceleration vector \(\vec{a}(t)\):**
\[
\vec{a}(t) = \frac{d\vec{v}}{dt} = \left\langle \frac{d}{dt}(1), \frac{d}{dt}(e^t), \frac{d}{dt}(0) \right\rangle = \langle 0, e^t, 0 \rangle
\]
3. **Find the magnitude of the velocity vector \(|\vec{v}(t)|\):**
\[
|\vec{v}(t)| = \sqrt{ (1)^2 + (e^t)^2 + (0)^2 } = \sqrt{1 + e^{2t}}
\]
4. **Calculate the tangential component of acceleration \(a_T\):**
\[
a_T = \frac{\vec{v}(t) \cdot \vec{a}(t)}{|\vec{v}(t)|}
\]
Here, \(\vec{v}(t) \cdot \vec{a}(t)\) is the dot product of the velocity and acceleration vectors:
\[
\vec{v}(t) \cdot \vec{a}(t) = \langle 1, e^t, 0 \rangle \cdot \langle 0, e^t, 0 \rangle = 1 \cdot 0 + e^t \cdot
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Could you please write in integer or decimal.
Solution
Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning