Given the unit tangent 1 (-2 sin t, 1, 2 cos t), V5 U = and unit normal vector: n = (– cos t,0, – sin t) . Choose the correct unit binormal vector: 1 b = V5 (- sin t, –2, cos t) COS None of these options are correct O b = (sin t, –2, cos t) 1 O b= 1 (sin t, 2 sin? t – 2 cos² t, – cos t) |3D 1 - V5 O 1 b = (- sin t, 2, – cos t) COS %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given the unit tangent
1
(-2 sin t, 1, 2 cos t) ,
U =
V5
and unit normal vector:
n = (- cos t, 0, – sin t) .
Choose the correct unit binormal vector:
1
b =
V5
E (- sin t, –2, cos t)
None of these options are correct
b = (sin t, –2, cos t)
1
C
cOS
V5
O b =
1 (sint, 2 sin? t – 2 cos? t, – cos t)
1
COS
-
-
V5
b = (- sin t, 2, – cos t)
1
(– sin t, 2, – cos t)
V5
Transcribed Image Text:Given the unit tangent 1 (-2 sin t, 1, 2 cos t) , U = V5 and unit normal vector: n = (- cos t, 0, – sin t) . Choose the correct unit binormal vector: 1 b = V5 E (- sin t, –2, cos t) None of these options are correct b = (sin t, –2, cos t) 1 C cOS V5 O b = 1 (sint, 2 sin? t – 2 cos? t, – cos t) 1 COS - - V5 b = (- sin t, 2, – cos t) 1 (– sin t, 2, – cos t) V5
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,