Given the tridiagonal matrix [1.45 0.087 0 0.37 1.0722 0.588 0 0 work out the values ,i=1,...,4 and u,,i=1,...,3 in the LU factorisation A=LU with L= 0 0.78 1.5468 0.6438 0 0.21 1.2718 0 01 0 0 0.78 13 0 0 0.21 14 Use the LU factorisation to solve the system Az = b with b= 0 11 0.37 0 0 12 -4.19572 -5.410072 -0.792684 5.0599 ,U = [1 ul 0 0 0 1 u2 0 0 0 1 u3 0 0 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

please do not provide solution in image format thank you!

Given the tridiagonal matrix
1.45 0.087
0
0
0.37 1.0722 0.588 0
0
0
work out the values ,i=1,...,4 and u,,i = 1,...,3 in the LU
factorisation A = LU with
11
0 0
0.37
0 0
0
0.78 13 0
1
0 0 0.21 14
0 0 1
Use the LU factorisation to solve the system Az = =b with
L=
b=
0.78 1.5468 0.6438
0.21 1.2718
0
(c) 21
0
12
4.19572
-5.410072
-0.792684
5.0599
=
1, 11₂ =
U
for i=1,...,4
Use at least 6 decimal places for your calculations and specify
your final results to 2 decimal places.
(a) 4₁=
1,4₂ =
0.43=C
(b) u
2.
[1 ul
0
0 0
0
1 u2 0
u3
1. Ug =
x3 =
24
Transcribed Image Text:Given the tridiagonal matrix 1.45 0.087 0 0 0.37 1.0722 0.588 0 0 0 work out the values ,i=1,...,4 and u,,i = 1,...,3 in the LU factorisation A = LU with 11 0 0 0.37 0 0 0 0.78 13 0 1 0 0 0.21 14 0 0 1 Use the LU factorisation to solve the system Az = =b with L= b= 0.78 1.5468 0.6438 0.21 1.2718 0 (c) 21 0 12 4.19572 -5.410072 -0.792684 5.0599 = 1, 11₂ = U for i=1,...,4 Use at least 6 decimal places for your calculations and specify your final results to 2 decimal places. (a) 4₁= 1,4₂ = 0.43=C (b) u 2. [1 ul 0 0 0 0 1 u2 0 u3 1. Ug = x3 = 24
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,