Given the partitioned matrix A = [ B]. B]₁ C D in which B and C are invertible. Which of the following gives the correct formula for A-¹?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Inverse of a Partitioned Matrix

Given the partitioned matrix

\[ A = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} \]

in which \( B \) and \( C \) are invertible. Which of the following gives the correct formula for \( A^{-1} \)?

### Answer Options:

- \[
\begin{bmatrix}
-C^{-1} D B^{-1} & C^{-1} \\
B^{-1} & 0
\end{bmatrix}
\]

- \[
\begin{bmatrix}
0 & B^{-1} \\
C^{-1} & -B^{-1} D C^{-1}
\end{bmatrix}
\]

- \[
\begin{bmatrix}
0 & C^{-1} \\
B^{-1} & -B^{-1} D C^{-1}
\end{bmatrix}
\]

- \[
\begin{bmatrix}
0 & -B \\
-C & -D
\end{bmatrix}
\]
Transcribed Image Text:### Inverse of a Partitioned Matrix Given the partitioned matrix \[ A = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} \] in which \( B \) and \( C \) are invertible. Which of the following gives the correct formula for \( A^{-1} \)? ### Answer Options: - \[ \begin{bmatrix} -C^{-1} D B^{-1} & C^{-1} \\ B^{-1} & 0 \end{bmatrix} \] - \[ \begin{bmatrix} 0 & B^{-1} \\ C^{-1} & -B^{-1} D C^{-1} \end{bmatrix} \] - \[ \begin{bmatrix} 0 & C^{-1} \\ B^{-1} & -B^{-1} D C^{-1} \end{bmatrix} \] - \[ \begin{bmatrix} 0 & -B \\ -C & -D \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,