Given the heat equation, U₁=Uxx, 00 XX u(0,t)= u(2,t)=0, t≥0 u(x,0)=3x(2-x),
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![EXERCISES 3.8
Based on the information in Example 3.44 with the same step size At-0.01 and 5-04,
solve the given 1D heat problem up to t-0.02.
2 Given the heat equation,
Answer:
1.
U₁ = Uxx +
u(0,t)= u(1,t)=0,
u(x,0)=x(1-x),
with the steps size At=0.01 and Ax=0.2.
Determine all the values of the end points and interior points of the first row of the problem.
40,2 = 0
1,2 = 1.80
42,2 = 2.7075
U3,2 = 2.7563
4,2 = 1.8038
0<x<1,
45,2 = 0.
t>0,
120,
2. End points
Chapter 3
:
Interior points:
0,0 = 0 and u5,0 =0.
₁0=0.16, ₂0=0.24,
U3,0 = 0.24, U4,0 = 0.16.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9c612db3-12f8-4340-89c9-747cd0839a27%2Fc82bf80d-2e93-4989-b427-55dad59f2598%2F6ta46e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:EXERCISES 3.8
Based on the information in Example 3.44 with the same step size At-0.01 and 5-04,
solve the given 1D heat problem up to t-0.02.
2 Given the heat equation,
Answer:
1.
U₁ = Uxx +
u(0,t)= u(1,t)=0,
u(x,0)=x(1-x),
with the steps size At=0.01 and Ax=0.2.
Determine all the values of the end points and interior points of the first row of the problem.
40,2 = 0
1,2 = 1.80
42,2 = 2.7075
U3,2 = 2.7563
4,2 = 1.8038
0<x<1,
45,2 = 0.
t>0,
120,
2. End points
Chapter 3
:
Interior points:
0,0 = 0 and u5,0 =0.
₁0=0.16, ₂0=0.24,
U3,0 = 0.24, U4,0 = 0.16.
![Example 3.44
Given the heat equation,
U₁=Uxx, 0<x<2, t>0
u(0,t)= u(2,t)=0, t≥0
u(x,0)=3x(2-x).
Cha](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9c612db3-12f8-4340-89c9-747cd0839a27%2Fc82bf80d-2e93-4989-b427-55dad59f2598%2Fzdskos8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Example 3.44
Given the heat equation,
U₁=Uxx, 0<x<2, t>0
u(0,t)= u(2,t)=0, t≥0
u(x,0)=3x(2-x).
Cha
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)