Given the function v(s) = In(3 – cos(3s)) and the mesh s; = s0 + ih, where so = 3' determine the central finite difference for the first derivative of v with step size h at mesh point 21 i = 6. At the same point, also calculate the exact first derivative v'(s;). Calculate the absolute value of the error of the finite difference approximation at the point s;. Work to at least 6 decimal places throughout and enter your answers to 2 decimal places. (a) Enter the finite difference approximation (b) Enter the exact derivative (c) Enter the absolute error

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
Given the function
v(s) = In(3 – cos(3s))
and the mesh s; = so + ih, where so
3'
determine the central finite difference for the first derivative of v with step size h
at mesh point
21
i = 6.
At the same point, also calculate the exact first derivative v'(s;).
Calculate the absolute value of the error of the finite difference approximation at the point s;.
Work to at least 6 decimal places throughout and enter your answers to 2 decimal places.
(a) Enter the finite difference approximation
(b) Enter the exact derivative
(c) Enter the absolute error
(d) If we were to divide the step size by 10, the error will be approximately multiplied by a factor of
Select v
Transcribed Image Text:Given the function v(s) = In(3 – cos(3s)) and the mesh s; = so + ih, where so 3' determine the central finite difference for the first derivative of v with step size h at mesh point 21 i = 6. At the same point, also calculate the exact first derivative v'(s;). Calculate the absolute value of the error of the finite difference approximation at the point s;. Work to at least 6 decimal places throughout and enter your answers to 2 decimal places. (a) Enter the finite difference approximation (b) Enter the exact derivative (c) Enter the absolute error (d) If we were to divide the step size by 10, the error will be approximately multiplied by a factor of Select v
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,