Given the function v(s) – cos(4 + cos(28)) and the mesh s, – 80 + ih, where so 2' determine the forward finite difference for the first derivative of v with step size h at mesh point i =4. 14 At the same point, also calculate the exact first derivative v (s;). Calculate the absolute value of the error of the finite difference approximation at the point s. Work to at least 6 decimal places throughout and enter your answers to 2 decimal places. (a) Enter the finite difference approximation (b) Enter the exact derivative (c) Enter the absolute error (d) If we were to divide the step size by 2, the error will be approximately multiplied by a factor of

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Plz solve this now in 30 min i need perfect soloution in 30 min only and take a thumb up plz Plz give me answer as needed according to answer requirements
anu uie mesIT s; = 80 + In, WIIeie so
determine the forward finite difference for the first derivative of v with steps
At the same point, also calculate the exact first derivative v (s;).
Calculate the absolute value of the error of the finite difference approximatic
Work to at least 6 decimal places throughout and enter your answers to 2
(a) Enter the finite difference approximation
(b) Enter the exact derivative
(c) Enter the absolute error
(d) If we were to divide the step size by 2, the error will be approximately mul
Select
Select
2
1/2
4
1/4
Transcribed Image Text:anu uie mesIT s; = 80 + In, WIIeie so determine the forward finite difference for the first derivative of v with steps At the same point, also calculate the exact first derivative v (s;). Calculate the absolute value of the error of the finite difference approximatic Work to at least 6 decimal places throughout and enter your answers to 2 (a) Enter the finite difference approximation (b) Enter the exact derivative (c) Enter the absolute error (d) If we were to divide the step size by 2, the error will be approximately mul Select Select 2 1/2 4 1/4
The Questions
Given the function
v(s) = cos(4 + cos(2s))
and the mesh s; = 80 + ih, where so
determine the forward finite difference for the first derivative of v with step size h
at mesh point i= 4.
14
At the same point, also calculate the exact first derivative d (s.).
Calculate the absolute value of the error of the finite difference approximation at the point s.
Work to at least 6 decimal places throughout and enter your answers to 2 decimal places.
(a) Enter the finite difference approximation
(b) Enter the exact derivative
(c) Enter the absolute error
(d) If we were to divide the step size by 2, the error will be approximately multiplied by a factor of
Transcribed Image Text:The Questions Given the function v(s) = cos(4 + cos(2s)) and the mesh s; = 80 + ih, where so determine the forward finite difference for the first derivative of v with step size h at mesh point i= 4. 14 At the same point, also calculate the exact first derivative d (s.). Calculate the absolute value of the error of the finite difference approximation at the point s. Work to at least 6 decimal places throughout and enter your answers to 2 decimal places. (a) Enter the finite difference approximation (b) Enter the exact derivative (c) Enter the absolute error (d) If we were to divide the step size by 2, the error will be approximately multiplied by a factor of
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,