Given the function k(x) - Calculate the following values: k( – 9) = k(2) = k(4) = k( − 8) = k( − 1) = k(6) = = = - 4x - 7 2x²x9 - 2x + 1 100 x < -1 −1 < x≤ 4 x > 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Piecewise Function and Evaluation

Given the function \( k(x) \):

\[ 
k(x) = \begin{cases} 
-4x - 7 & \text{ if } x \leq -1 \\
2x^2 - x - 9 & \text{ if } -1 < x \leq 4 \\
-2x + 1 & \text{ if } x > 4 
\end{cases}
\]

Calculate the following values:

1. \( k(-9) = \)  \_\_\_\_\_\_\_\_\_\_
2. \( k(2) = \)  \_\_\_\_\_\_\_\_\_\_
3. \( k(4) = \)  \_\_\_\_\_\_\_\_\_\_
4. \( k(-8) = \)  \_\_\_\_\_\_\_\_\_\_
5. \( k(-1) = \)  \_\_\_\_\_\_\_\_\_\_
6. \( k(6) = \)  \_\_\_\_\_\_\_\_\_\_

### Explanation

This function, \( k(x) \), is defined in a piecewise manner with different expressions depending on the value of \( x \). Follow the rules below to calculate the function value for a given \( x \):

1. If \( x \) is less than or equal to -1, use the formula: \( -4x - 7 \).
2. If \( x \) is greater than -1 but less than or equal to 4, use the formula: \( 2x^2 - x - 9 \).
3. If \( x \) is greater than 4, use the formula: \( -2x + 1 \).

To find the value of \( k(x) \) for a particular \( x \):

- **For \( k(-9) \)**:
  - Since \( -9 \leq -1 \), use \( -4x - 7 \):
  \[
  k(-9) = -4(-9) - 7 = 36 - 7 = 29
  \]

- **For \( k(2) \)**:
  - Since \( -1 < 2 \leq 4 \), use \( 2x^2 - x - 9 \):
  \
Transcribed Image Text:### Piecewise Function and Evaluation Given the function \( k(x) \): \[ k(x) = \begin{cases} -4x - 7 & \text{ if } x \leq -1 \\ 2x^2 - x - 9 & \text{ if } -1 < x \leq 4 \\ -2x + 1 & \text{ if } x > 4 \end{cases} \] Calculate the following values: 1. \( k(-9) = \) \_\_\_\_\_\_\_\_\_\_ 2. \( k(2) = \) \_\_\_\_\_\_\_\_\_\_ 3. \( k(4) = \) \_\_\_\_\_\_\_\_\_\_ 4. \( k(-8) = \) \_\_\_\_\_\_\_\_\_\_ 5. \( k(-1) = \) \_\_\_\_\_\_\_\_\_\_ 6. \( k(6) = \) \_\_\_\_\_\_\_\_\_\_ ### Explanation This function, \( k(x) \), is defined in a piecewise manner with different expressions depending on the value of \( x \). Follow the rules below to calculate the function value for a given \( x \): 1. If \( x \) is less than or equal to -1, use the formula: \( -4x - 7 \). 2. If \( x \) is greater than -1 but less than or equal to 4, use the formula: \( 2x^2 - x - 9 \). 3. If \( x \) is greater than 4, use the formula: \( -2x + 1 \). To find the value of \( k(x) \) for a particular \( x \): - **For \( k(-9) \)**: - Since \( -9 \leq -1 \), use \( -4x - 7 \): \[ k(-9) = -4(-9) - 7 = 36 - 7 = 29 \] - **For \( k(2) \)**: - Since \( -1 < 2 \leq 4 \), use \( 2x^2 - x - 9 \): \
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning