Given the following three vectors: Show that v1, v2, iz form a basis of R by proving that they are independent AND Span {di, ö2, üz} = R*. To justify Span {v1, d2, vz} = R°, show that for a random vector y e R°, ye Span {v1, 02, 03} , or = a•-0j+ß-7z+y•7g, a, ß, y E R

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

Show that u1, u2, u3 form a basis of R3 by proving that they are independent and Span{u1, u2, u3}= R3.

Given the following three vectors:

\[ 
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} 
\]

Show that \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) form a basis of \(\mathbb{R}^3\) by proving that they are independent and \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3\). 

To justify \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3\), show that for a random vector:

\[
\mathbf{y} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3, \quad \mathbf{y} \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \, \text{or} \, \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3, \, \alpha, \beta, \gamma \in \mathbb{R}
\]
Transcribed Image Text:Given the following three vectors: \[ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \] Show that \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) form a basis of \(\mathbb{R}^3\) by proving that they are independent and \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3\). To justify \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3\), show that for a random vector: \[ \mathbf{y} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3, \quad \mathbf{y} \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \, \text{or} \, \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3, \, \alpha, \beta, \gamma \in \mathbb{R} \]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education