Given the following systems, 4x1 + 2x2 - x3 = 10 x1 + 3x2 - 2x3 = 4 2x1 - 2x2 + 3x3 = 6 1. Solve the system using Jacobi Method up to 11 iterations. This is the example that might help..
Given the following systems, 4x1 + 2x2 - x3 = 10 x1 + 3x2 - 2x3 = 4 2x1 - 2x2 + 3x3 = 6 1. Solve the system using Jacobi Method up to 11 iterations. This is the example that might help..
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Answer the following and show solutions.
Given the following systems,
4x1 + 2x2 - x3 = 10
x1 + 3x2 - 2x3 = 4
2x1 - 2x2 + 3x3 = 6
1. Solve the system using Jacobi Method up to 11 iterations.
This is the example that might help..
![3RD ITERATION:
x₂ = 3-√₂+² 2 = 3-1 + 1.1875
3
3
Yo = 7-2x₂-2₂
- 2x2-2₂
7-210-757-1-1875
4
4
1.078125
Z₂
2
4-x₂+x2= 4 -(0-75) +1 1.0625
4
។
Iteration
Y
Z
O
1
1.75
1
0.75
1
1-1875
1.0625
1.078125
1.0625
0.9947921 0.953125 1.003906
5
6
1.016927 1-001628 0-989583
0-995985 | 0.994141 0.996175
1.00303
0.999539
1-000678
As required, the difference of the last iteration
Shoulder be less than 0.005,
| X=1; y = 1 ; 2=1
L
2
3
4
(1
O
5 decimal
O
= 1.0625](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6a3d2b8a-6136-4722-a32b-ba911631632e%2Fe646428d-afa9-4ab1-9b83-d7bc7bfee53f%2Fs7bpyjp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3RD ITERATION:
x₂ = 3-√₂+² 2 = 3-1 + 1.1875
3
3
Yo = 7-2x₂-2₂
- 2x2-2₂
7-210-757-1-1875
4
4
1.078125
Z₂
2
4-x₂+x2= 4 -(0-75) +1 1.0625
4
។
Iteration
Y
Z
O
1
1.75
1
0.75
1
1-1875
1.0625
1.078125
1.0625
0.9947921 0.953125 1.003906
5
6
1.016927 1-001628 0-989583
0-995985 | 0.994141 0.996175
1.00303
0.999539
1-000678
As required, the difference of the last iteration
Shoulder be less than 0.005,
| X=1; y = 1 ; 2=1
L
2
3
4
(1
O
5 decimal
O
= 1.0625
![System of Linear Equations (Iterative Methods)
Iterative methods are based on successive
improvement of initial guesses for the solution.
ITERATIVE METHODI: JACOBI METHOD
Step 1. Rewrite the system
Step 2. Initialize a value for the unknowns
of zero.
Step 3. Perform iteration until the values of
the unknown don't diverge anymore.
folut
Example &
肉丸 3x+2y2=3
4y+z=7
X-y + 4z = 4
Solution:
NAA
x = 3-y+z
3
Y
= 7-2x-z
4
Z=
4-x+x
4
1st Iteration : x=0; y=0,2 = 0
X, = 3-ото
= 1
Y₁ = 7-2(0) - (0)
= 1.75
2,4-04 으
= 1
4
2ND ITERATION:
x₂ = 3-y₁ +2₁= 3 ~ 1.75 +1 = 0.75
3
3
Y2:7-2x, 7,7-20)-(1
4
4
Z₂ = 4-X₁tY₁ = 4-1+1.75
4
4
= 1.1875](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6a3d2b8a-6136-4722-a32b-ba911631632e%2Fe646428d-afa9-4ab1-9b83-d7bc7bfee53f%2Fpvgcos_processed.jpeg&w=3840&q=75)
Transcribed Image Text:System of Linear Equations (Iterative Methods)
Iterative methods are based on successive
improvement of initial guesses for the solution.
ITERATIVE METHODI: JACOBI METHOD
Step 1. Rewrite the system
Step 2. Initialize a value for the unknowns
of zero.
Step 3. Perform iteration until the values of
the unknown don't diverge anymore.
folut
Example &
肉丸 3x+2y2=3
4y+z=7
X-y + 4z = 4
Solution:
NAA
x = 3-y+z
3
Y
= 7-2x-z
4
Z=
4-x+x
4
1st Iteration : x=0; y=0,2 = 0
X, = 3-ото
= 1
Y₁ = 7-2(0) - (0)
= 1.75
2,4-04 으
= 1
4
2ND ITERATION:
x₂ = 3-y₁ +2₁= 3 ~ 1.75 +1 = 0.75
3
3
Y2:7-2x, 7,7-20)-(1
4
4
Z₂ = 4-X₁tY₁ = 4-1+1.75
4
4
= 1.1875
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)