Given the differential equation - == y'' + 4y = 3et, y(0) = 0, y'(0) = 0 a) Apply the Laplace Transform and solve for Y(s) 3 Y(s): = (8-6)(s²+4) 3 (s - 6) (s² + 4) b) Now solve the IVP by using the inverse Laplace Transform y(t) = L−¹{Y(s)} 9 y(t) 3 6t 3 = 40 8 cos (2t) + sin(2t) x 20
Given the differential equation - == y'' + 4y = 3et, y(0) = 0, y'(0) = 0 a) Apply the Laplace Transform and solve for Y(s) 3 Y(s): = (8-6)(s²+4) 3 (s - 6) (s² + 4) b) Now solve the IVP by using the inverse Laplace Transform y(t) = L−¹{Y(s)} 9 y(t) 3 6t 3 = 40 8 cos (2t) + sin(2t) x 20
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Given the differential equation
-
==
y'' + 4y = 3et, y(0) = 0, y'(0) = 0
a) Apply the Laplace Transform and solve for Y(s)
3
Y(s):
=
(8-6)(s²+4)
3
(s - 6) (s² + 4)
b) Now solve the IVP by using the inverse Laplace Transform y(t) = L−¹{Y(s)}
9
y(t)
3 6t
3
=
40
8
cos (2t) + sin(2t) x
20](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2323f944-68c6-4ffb-b4bd-7709a3866c17%2F7d6c2aba-d676-4885-a6c8-b2671cbd3b24%2Fw0tefnn_processed.png&w=3840&q=75)
Transcribed Image Text:Given the differential equation
-
==
y'' + 4y = 3et, y(0) = 0, y'(0) = 0
a) Apply the Laplace Transform and solve for Y(s)
3
Y(s):
=
(8-6)(s²+4)
3
(s - 6) (s² + 4)
b) Now solve the IVP by using the inverse Laplace Transform y(t) = L−¹{Y(s)}
9
y(t)
3 6t
3
=
40
8
cos (2t) + sin(2t) x
20
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)