Given the differential equation y' = 3y e2 and y(0) = 4 1. Use implicit derivatives to find " y" ", " y"" 2. Use the initial value "y(0) = 4" to find the value of "y'(0)", "y"(0)", and "y"(0)", then plug them into the Taylor Series Polynomial formula.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

11

Given the differential equation
y' = 3y e2x and y(0) = 4
1. Use implicit derivatives to find " y"", " y""
2. Use the initial value "y(0) = 4" to find the value of "y'(0)", "y"(0)", and "y"(0)", then plug them into the Taylor Series Polynomial
formula.
4
x° +
0!
12
x' +
1!
36
x2 +
432
A)
y(x)
...
2!
3!
864
3 + ...
4
12
B y(x)
(B)
72
x2 +
=
-
-
0!
1!
2!
3!
4
y(x)
0!
60
x2 +
12
372
x +
+
2!
...
1!
3!
4
(D)
y(x)
+
3!
r3 + ...
|
0!
1!
2!
y(x)
4
x° +
12
x! +
1!
27
x +
(E)
x2
-
-
-
...
O!
2!
3!
y(x) = 0!
36
x? +
12
108
x +
3!
F
|
...
1!
2!
+
+
Transcribed Image Text:Given the differential equation y' = 3y e2x and y(0) = 4 1. Use implicit derivatives to find " y"", " y"" 2. Use the initial value "y(0) = 4" to find the value of "y'(0)", "y"(0)", and "y"(0)", then plug them into the Taylor Series Polynomial formula. 4 x° + 0! 12 x' + 1! 36 x2 + 432 A) y(x) ... 2! 3! 864 3 + ... 4 12 B y(x) (B) 72 x2 + = - - 0! 1! 2! 3! 4 y(x) 0! 60 x2 + 12 372 x + + 2! ... 1! 3! 4 (D) y(x) + 3! r3 + ... | 0! 1! 2! y(x) 4 x° + 12 x! + 1! 27 x + (E) x2 - - - ... O! 2! 3! y(x) = 0! 36 x? + 12 108 x + 3! F | ... 1! 2! + +
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,