Given the differential equation and its initial conditions y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7 Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(S). L{ y(t)} = Y(s) L{ y'(1)} = S Y(S) - y(0) L{ y"(1)} = s2 Y(s) - Sy(0) - y'(0)
Given the differential equation and its initial conditions y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7 Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(S). L{ y(t)} = Y(s) L{ y'(1)} = S Y(S) - y(0) L{ y"(1)} = s2 Y(s) - Sy(0) - y'(0)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
q14
![Given the differential equation and its initial conditions
y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7
Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(s).
L{ y(1)} = Y(s)
L{ y'(1)} = S Y(S) - y(0)
L{ y"(t)} = S? Y(s) - Sy(0) - y'(0)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fced20a7a-5f6b-4ed8-baa5-7011ff618332%2Fbba1ae36-59e0-4cf4-be13-bd582eab9eaf%2Fx994wsn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Given the differential equation and its initial conditions
y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7
Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(s).
L{ y(1)} = Y(s)
L{ y'(1)} = S Y(S) - y(0)
L{ y"(t)} = S? Y(s) - Sy(0) - y'(0)
![s2 - 25 + 5
A
Y(s) =
(s - 1)(s + 1)(s + 5)
S
BY(s)
(s + 1)(s + 5)
-s2 + 25 + 11
Y(s) =
(s - 1)(s+ 1)(s + 5)
11 - S
DY(s)
(s - 1)(s + 1)(s + 5)
11 - s2
(s - 1)(s + 1) (s + 5)
E
Y(s) =
752 + 34S
41
Y(s) =
(s - 1)(s + 1)(s + 5)
F](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fced20a7a-5f6b-4ed8-baa5-7011ff618332%2Fbba1ae36-59e0-4cf4-be13-bd582eab9eaf%2Fepiofqu_processed.jpeg&w=3840&q=75)
Transcribed Image Text:s2 - 25 + 5
A
Y(s) =
(s - 1)(s + 1)(s + 5)
S
BY(s)
(s + 1)(s + 5)
-s2 + 25 + 11
Y(s) =
(s - 1)(s+ 1)(s + 5)
11 - S
DY(s)
(s - 1)(s + 1)(s + 5)
11 - s2
(s - 1)(s + 1) (s + 5)
E
Y(s) =
752 + 34S
41
Y(s) =
(s - 1)(s + 1)(s + 5)
F
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)