Given the differential equation and its initial conditions y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7 Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(S). L{ y(t)} = Y(s) L{ y'(1)} = S Y(S) - y(0) L{ y"(1)} = s2 Y(s) - Sy(0) - y'(0)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

q14

Given the differential equation and its initial conditions
y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7
Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(s).
L{ y(1)} = Y(s)
L{ y'(1)} = S Y(S) - y(0)
L{ y"(t)} = S? Y(s) - Sy(0) - y'(0)
Transcribed Image Text:Given the differential equation and its initial conditions y" + 6y' + 5y = 12 e' with y(0) = -1 and y'(0) = 7 Use the Laplace Transform rules for derivatives to convert this function into F(s) and then solve for Y(s). L{ y(1)} = Y(s) L{ y'(1)} = S Y(S) - y(0) L{ y"(t)} = S? Y(s) - Sy(0) - y'(0)
s2 - 25 + 5
A
Y(s) =
(s - 1)(s + 1)(s + 5)
S
BY(s)
(s + 1)(s + 5)
-s2 + 25 + 11
Y(s) =
(s - 1)(s+ 1)(s + 5)
11 - S
DY(s)
(s - 1)(s + 1)(s + 5)
11 - s2
(s - 1)(s + 1) (s + 5)
E
Y(s) =
752 + 34S
41
Y(s) =
(s - 1)(s + 1)(s + 5)
F
Transcribed Image Text:s2 - 25 + 5 A Y(s) = (s - 1)(s + 1)(s + 5) S BY(s) (s + 1)(s + 5) -s2 + 25 + 11 Y(s) = (s - 1)(s+ 1)(s + 5) 11 - S DY(s) (s - 1)(s + 1)(s + 5) 11 - s2 (s - 1)(s + 1) (s + 5) E Y(s) = 752 + 34S 41 Y(s) = (s - 1)(s + 1)(s + 5) F
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,