Given that V= pz cos o, find VV and V²V.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem:**
Given that \( V = \rho^2 z \cos \phi \), find \( \nabla V \) and \( \nabla^2 V \).
**Solution:**
To solve this problem, we'll calculate the gradient and the Laplacian of the given function \( V \).
1. **Gradient (\( \nabla V \)):**
The gradient of a scalar field \( V \) in cylindrical coordinates (\( \rho, \phi, z \)) is given by:
\[
\nabla V = \left( \frac{\partial V}{\partial \rho}, \frac{1}{\rho} \frac{\partial V}{\partial \phi}, \frac{\partial V}{\partial z} \right)
\]
- Partial derivative with respect to \( \rho \):
\[
\frac{\partial V}{\partial \rho} = 2\rho z \cos \phi
\]
- Partial derivative with respect to \( \phi \):
\[
\frac{\partial V}{\partial \phi} = -\rho^2 z \sin \phi
\]
Hence,
\[
\frac{1}{\rho} \frac{\partial V}{\partial \phi} = -\rho z \sin \phi
\]
- Partial derivative with respect to \( z \):
\[
\frac{\partial V}{\partial z} = \rho^2 \cos \phi
\]
Thus, the gradient of \( V \) is:
\[
\nabla V = \left( 2\rho z \cos \phi, -\rho z \sin \phi, \rho^2 \cos \phi \right)
\]
2. **Laplacian (\( \nabla^2 V \)):**
The Laplacian of a scalar field \( V \) in cylindrical coordinates is given by:
\[
\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4bf62d6d-db44-481f-809c-2b5fe2fdf00c%2F48cedc31-0d60-4620-96d8-99a6bdc8b704%2Fwieirle_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem:**
Given that \( V = \rho^2 z \cos \phi \), find \( \nabla V \) and \( \nabla^2 V \).
**Solution:**
To solve this problem, we'll calculate the gradient and the Laplacian of the given function \( V \).
1. **Gradient (\( \nabla V \)):**
The gradient of a scalar field \( V \) in cylindrical coordinates (\( \rho, \phi, z \)) is given by:
\[
\nabla V = \left( \frac{\partial V}{\partial \rho}, \frac{1}{\rho} \frac{\partial V}{\partial \phi}, \frac{\partial V}{\partial z} \right)
\]
- Partial derivative with respect to \( \rho \):
\[
\frac{\partial V}{\partial \rho} = 2\rho z \cos \phi
\]
- Partial derivative with respect to \( \phi \):
\[
\frac{\partial V}{\partial \phi} = -\rho^2 z \sin \phi
\]
Hence,
\[
\frac{1}{\rho} \frac{\partial V}{\partial \phi} = -\rho z \sin \phi
\]
- Partial derivative with respect to \( z \):
\[
\frac{\partial V}{\partial z} = \rho^2 \cos \phi
\]
Thus, the gradient of \( V \) is:
\[
\nabla V = \left( 2\rho z \cos \phi, -\rho z \sin \phi, \rho^2 \cos \phi \right)
\]
2. **Laplacian (\( \nabla^2 V \)):**
The Laplacian of a scalar field \( V \) in cylindrical coordinates is given by:
\[
\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)