Given that V= pz cos o, find VV and V²V.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
**Problem:**

Given that \( V = \rho^2 z \cos \phi \), find \( \nabla V \) and \( \nabla^2 V \).

**Solution:**

To solve this problem, we'll calculate the gradient and the Laplacian of the given function \( V \).

1. **Gradient (\( \nabla V \)):**

   The gradient of a scalar field \( V \) in cylindrical coordinates (\( \rho, \phi, z \)) is given by:

   \[
   \nabla V = \left( \frac{\partial V}{\partial \rho}, \frac{1}{\rho} \frac{\partial V}{\partial \phi}, \frac{\partial V}{\partial z} \right)
   \]

   - Partial derivative with respect to \( \rho \):
     \[
     \frac{\partial V}{\partial \rho} = 2\rho z \cos \phi
     \]

   - Partial derivative with respect to \( \phi \):
     \[
     \frac{\partial V}{\partial \phi} = -\rho^2 z \sin \phi
     \]

     Hence, 
     \[
     \frac{1}{\rho} \frac{\partial V}{\partial \phi} = -\rho z \sin \phi
     \]

   - Partial derivative with respect to \( z \):
     \[
     \frac{\partial V}{\partial z} = \rho^2 \cos \phi
     \]

   Thus, the gradient of \( V \) is:
   \[
   \nabla V = \left( 2\rho z \cos \phi, -\rho z \sin \phi, \rho^2 \cos \phi \right)
   \]

2. **Laplacian (\( \nabla^2 V \)):**

   The Laplacian of a scalar field \( V \) in cylindrical coordinates is given by:

   \[
   \nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{
Transcribed Image Text:**Problem:** Given that \( V = \rho^2 z \cos \phi \), find \( \nabla V \) and \( \nabla^2 V \). **Solution:** To solve this problem, we'll calculate the gradient and the Laplacian of the given function \( V \). 1. **Gradient (\( \nabla V \)):** The gradient of a scalar field \( V \) in cylindrical coordinates (\( \rho, \phi, z \)) is given by: \[ \nabla V = \left( \frac{\partial V}{\partial \rho}, \frac{1}{\rho} \frac{\partial V}{\partial \phi}, \frac{\partial V}{\partial z} \right) \] - Partial derivative with respect to \( \rho \): \[ \frac{\partial V}{\partial \rho} = 2\rho z \cos \phi \] - Partial derivative with respect to \( \phi \): \[ \frac{\partial V}{\partial \phi} = -\rho^2 z \sin \phi \] Hence, \[ \frac{1}{\rho} \frac{\partial V}{\partial \phi} = -\rho z \sin \phi \] - Partial derivative with respect to \( z \): \[ \frac{\partial V}{\partial z} = \rho^2 \cos \phi \] Thus, the gradient of \( V \) is: \[ \nabla V = \left( 2\rho z \cos \phi, -\rho z \sin \phi, \rho^2 \cos \phi \right) \] 2. **Laplacian (\( \nabla^2 V \)):** The Laplacian of a scalar field \( V \) in cylindrical coordinates is given by: \[ \nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,