Given that nothing else is borrowed in the near fut a government to completely eliminate its stock of c how much more annual repayments exceed the an interest expense portion of the debt is a function o is given by i(y) = y - y²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hints:

The rate of change of the stock of debt, y -  is the difference between the interest owed and the fraction of the debt repaid. i.e. How much more annual repayments exceed the annual interest expenses.

This is a differencial equation.

i) identify the differencial equation and please show all workings 

(b) Given that nothing else is borrowed in the near future, the length of time it will take
a government to completely eliminate its stock of debt will be entirely dependent on
how much more annual repayments exceed the annual interest expenses. The
interest expense portion of the debt is a function of the present stock of debt, y, and
is given by
i(y) %3D у — у?
The amount of money that the government repays to reduce its debt stock is
assumed to be a fraction, a, of the present stock of debt. Repayment is done at the
end of each financial year.
(i)
(ii)
Solve for the present stock of debt, y, as a function of t.
What will happen to government debt as t → ∞? Justify your response.
Transcribed Image Text:(b) Given that nothing else is borrowed in the near future, the length of time it will take a government to completely eliminate its stock of debt will be entirely dependent on how much more annual repayments exceed the annual interest expenses. The interest expense portion of the debt is a function of the present stock of debt, y, and is given by i(y) %3D у — у? The amount of money that the government repays to reduce its debt stock is assumed to be a fraction, a, of the present stock of debt. Repayment is done at the end of each financial year. (i) (ii) Solve for the present stock of debt, y, as a function of t. What will happen to government debt as t → ∞? Justify your response.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,