Given that f(x) = x"h(x) h( – 1) = 2 h'(– 1) = 5 Calculate f'(– 1). Hint: Use the product rule and the power rule.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Given that 

\[ f(x) = x^{11} h(x) \]

and 

\[ h(-1) = 2 \]

\[ h'(-1) = 5 \]

Calculate \( f'(-1) \).

**Hint:** Use the product rule and the power rule.

---

**Solution Reference:**

To solve for \( f'(-1) \), apply the product rule for differentiation: if \( f(x) = u(x)v(x) \), then 

\[ f'(x) = u'(x)v(x) + u(x)v'(x) \]

For this problem:

- Let \( u(x) = x^{11} \) and \( v(x) = h(x) \).
- Therefore, \( u'(x) = 11x^{10} \) using the power rule.

Substitute into the product rule formula:

\[ f'(x) = 11x^{10}h(x) + x^{11}h'(x) \]

Evaluate \( f'(-1) \):

\[ f'(-1) = 11(-1)^{10}h(-1) + (-1)^{11}h'(-1) \]

Since:

\[ (-1)^{10} = 1 \]

and 

\[ (-1)^{11} = -1 \]

Substitute the given values:

\[ f'(-1) = 11(1)(2) + (-1)(5) \]

\[ f'(-1) = 22 - 5 \]

\[ f'(-1) = 17 \]

So, \( f'(-1) = 17 \).
Transcribed Image Text:**Problem Statement:** Given that \[ f(x) = x^{11} h(x) \] and \[ h(-1) = 2 \] \[ h'(-1) = 5 \] Calculate \( f'(-1) \). **Hint:** Use the product rule and the power rule. --- **Solution Reference:** To solve for \( f'(-1) \), apply the product rule for differentiation: if \( f(x) = u(x)v(x) \), then \[ f'(x) = u'(x)v(x) + u(x)v'(x) \] For this problem: - Let \( u(x) = x^{11} \) and \( v(x) = h(x) \). - Therefore, \( u'(x) = 11x^{10} \) using the power rule. Substitute into the product rule formula: \[ f'(x) = 11x^{10}h(x) + x^{11}h'(x) \] Evaluate \( f'(-1) \): \[ f'(-1) = 11(-1)^{10}h(-1) + (-1)^{11}h'(-1) \] Since: \[ (-1)^{10} = 1 \] and \[ (-1)^{11} = -1 \] Substitute the given values: \[ f'(-1) = 11(1)(2) + (-1)(5) \] \[ f'(-1) = 22 - 5 \] \[ f'(-1) = 17 \] So, \( f'(-1) = 17 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning