Given that 1, 2 and O are eigenvalues of matrix S. The following number is a possible value of x except (1 4 x) S=0 2 2)- o o o/ A O B. 2 C. 4 D. None of the above

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

question(678) choose the correct answer

7. Given that 1, 2 and 0 are eigenvalues of matrix S. The following number is a possible
value of x except
s-
(1 4 x
S =0 2 2
0 0 0/
A. 0
B. 2
C. 4
D. None of the above
8. Consider a 3x3 matrix A with eigenvalues 1, h2 and ha. What will be the eigenvalues of A "?
B. -A1, -A2, -As
C. 1/A.1, 1/2.2, 1/h3.
D. None of the above
9. Consider v, = (2), vz = (9) and v3
3 as vectors in R³.
Let T: R»R be a linear transformation such that
T(v,) = (,), T(v2) = (,"') and T(v,) =
Find T 13
^ ()
A.
В.
C.
D. None of the above
Transcribed Image Text:7. Given that 1, 2 and 0 are eigenvalues of matrix S. The following number is a possible value of x except s- (1 4 x S =0 2 2 0 0 0/ A. 0 B. 2 C. 4 D. None of the above 8. Consider a 3x3 matrix A with eigenvalues 1, h2 and ha. What will be the eigenvalues of A "? B. -A1, -A2, -As C. 1/A.1, 1/2.2, 1/h3. D. None of the above 9. Consider v, = (2), vz = (9) and v3 3 as vectors in R³. Let T: R»R be a linear transformation such that T(v,) = (,), T(v2) = (,"') and T(v,) = Find T 13 ^ () A. В. C. D. None of the above
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,