Given points O (0,0), A (-15,-9), and B (12,-20), are O A and OB perpendicular? Be sure to show your work and/or explain your reasoning. BIU 工|E 三三| x x,三三12pt

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
icon
Concept explainers
Question
### Geometric Problem: Perpendicular Vectors

Given points \( O (0, 0) \), \( A \left( -\frac{15}{2}, -9 \right) \), and \( B (12, 20) \), are \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) perpendicular?

Be sure to show your work and/or explain your reasoning.

### Instructions:
1. Calculate the vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \).
2. Determine if the dot product of \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) is zero (which indicates that the vectors are perpendicular).

#### Vector Calculation:

- **Vector \( \overrightarrow{OA} \)**
\[
\overrightarrow{OA} = \left( -\frac{15}{2} - 0, -9 - 0 \right) = \left( -\frac{15}{2}, -9 \right)
\]

- **Vector \( \overrightarrow{OB} \)**
\[
\overrightarrow{OB} = \left( 12 - 0, 20 - 0 \right) = (12, 20)
\]

#### Dot Product Calculation:
The dot product of two vectors \( \overrightarrow{v} = (v_1, v_2) \) and \( \overrightarrow{w} = (w_1, w_2) \) is given by:
\[
\overrightarrow{v} \cdot \overrightarrow{w} = v_1 \cdot w_1 + v_2 \cdot w_2
\]

For \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \):
\[
\overrightarrow{OA} \cdot \overrightarrow{OB} = \left( -\frac{15}{2} \cdot 12 \right) + (-9 \cdot 20)
\]

Simplify the calculations:
\[
= \left( -\frac{15}{2} \cdot 12 \right) + (-9 \cdot 20) = (-90) + (-180) = -270
\]

Since the dot product \(\overrightarrow{OA} \cdot \overrightarrow{OB}
Transcribed Image Text:### Geometric Problem: Perpendicular Vectors Given points \( O (0, 0) \), \( A \left( -\frac{15}{2}, -9 \right) \), and \( B (12, 20) \), are \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) perpendicular? Be sure to show your work and/or explain your reasoning. ### Instructions: 1. Calculate the vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \). 2. Determine if the dot product of \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) is zero (which indicates that the vectors are perpendicular). #### Vector Calculation: - **Vector \( \overrightarrow{OA} \)** \[ \overrightarrow{OA} = \left( -\frac{15}{2} - 0, -9 - 0 \right) = \left( -\frac{15}{2}, -9 \right) \] - **Vector \( \overrightarrow{OB} \)** \[ \overrightarrow{OB} = \left( 12 - 0, 20 - 0 \right) = (12, 20) \] #### Dot Product Calculation: The dot product of two vectors \( \overrightarrow{v} = (v_1, v_2) \) and \( \overrightarrow{w} = (w_1, w_2) \) is given by: \[ \overrightarrow{v} \cdot \overrightarrow{w} = v_1 \cdot w_1 + v_2 \cdot w_2 \] For \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \): \[ \overrightarrow{OA} \cdot \overrightarrow{OB} = \left( -\frac{15}{2} \cdot 12 \right) + (-9 \cdot 20) \] Simplify the calculations: \[ = \left( -\frac{15}{2} \cdot 12 \right) + (-9 \cdot 20) = (-90) + (-180) = -270 \] Since the dot product \(\overrightarrow{OA} \cdot \overrightarrow{OB}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning