GIVEN: P₂ = { a₁ + a₁x + a₂x² ao, a₁, a₂ ≤ R} T: P₂ R, T(a₁ + a₁x + a₂x²) = a₂ For example: 7(1- x + 3x²) = 3 PROVE: T is a linear transformation. -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Given:**

\( P_2 = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \} \)

**Transformation:**

\( T: P_2 \rightarrow \mathbb{R} \), where \( T(a_0 + a_1 x + a_2 x^2) = a_2 \).

*For example:* \( T(1 - x + 3x^2) = 3 \).

**Prove:** \( T \) is a linear transformation.

---

In the above content, \( P_2 \) is the space of all polynomials of degree at most 2 with real coefficients. The transformation \( T \) maps a quadratic polynomial to the coefficient of \( x^2 \).

To prove that \( T \) is a linear transformation, we need to show that it satisfies the properties of linearity:
1. **Additivity:** \( T(f + g) = T(f) + T(g) \) for any polynomials \( f, g \in P_2 \).
2. **Homogeneity:** \( T(c \cdot f) = c \cdot T(f) \) for any polynomial \( f \in P_2 \) and scalar \( c \in \mathbb{R} \).
Transcribed Image Text:**Given:** \( P_2 = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \} \) **Transformation:** \( T: P_2 \rightarrow \mathbb{R} \), where \( T(a_0 + a_1 x + a_2 x^2) = a_2 \). *For example:* \( T(1 - x + 3x^2) = 3 \). **Prove:** \( T \) is a linear transformation. --- In the above content, \( P_2 \) is the space of all polynomials of degree at most 2 with real coefficients. The transformation \( T \) maps a quadratic polynomial to the coefficient of \( x^2 \). To prove that \( T \) is a linear transformation, we need to show that it satisfies the properties of linearity: 1. **Additivity:** \( T(f + g) = T(f) + T(g) \) for any polynomials \( f, g \in P_2 \). 2. **Homogeneity:** \( T(c \cdot f) = c \cdot T(f) \) for any polynomial \( f \in P_2 \) and scalar \( c \in \mathbb{R} \).
Expert Solution
Step 1: Given

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,