Given I = C: x=t y = cos(2t), z = sin ( 2t) > Sext Olt≤27. :: dx=1 dt ⇒ds= (x² + y² +2²) ds. 1: We know that ds = √ (d ² )² + (do ) ² + (dz) ² dt dx dy dz dt dt " dy वट dz = -2 sim (²t), d² = 2 COS(2t). dt i + 4 sin" (27) + 4 coś" (2+) dt = √5 dt [:: sin³0+ cos²³0=1] ,25 ⇒ I = √(t² + cos² (2 t) + sin(2t)) √5 dt 0 27 * I = √ ( 1² + 1) √5 dt = [#² ++] ² √5 = $T HET VE •√5 87³ +65 3 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

TRANSCRIBE THE FOLLOWING SOLUTION IN DIGITAL FORMAT

Given
I = S(x² + y² +2²³) ds.
с
C: x=t, y = cos(2t), z = sin(2t),
olt≤27.
': We know that
ds = √( @z j²₁+ (d ² ) ² + ( 1²₂ )
dz
dx 12
dy
dt
dt.
dx = 1, dy = -25'in (² t), d² = 2 cos(2t).
dz
(27)
⇒ds=√₁²+ 4 sin(²t) + 4c05² (2+) dt
= √5 d+
[¹: sin³o+cos³²0=1]
2π
⇒ I = √(t² + cos² (2 t) + sin(2t)) √5 dt
0
→
27
• I = √ ( + ² + 1 ) √5 d t = [ + ² + + ] ² ²³√5 = 8x² + 6*. √5
t
V5=
3
0
3
Transcribed Image Text:Given I = S(x² + y² +2²³) ds. с C: x=t, y = cos(2t), z = sin(2t), olt≤27. ': We know that ds = √( @z j²₁+ (d ² ) ² + ( 1²₂ ) dz dx 12 dy dt dt. dx = 1, dy = -25'in (² t), d² = 2 cos(2t). dz (27) ⇒ds=√₁²+ 4 sin(²t) + 4c05² (2+) dt = √5 d+ [¹: sin³o+cos³²0=1] 2π ⇒ I = √(t² + cos² (2 t) + sin(2t)) √5 dt 0 → 27 • I = √ ( + ² + 1 ) √5 d t = [ + ² + + ] ² ²³√5 = 8x² + 6*. √5 t V5= 3 0 3
Expert Solution
steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,