Given H = a) Show that His a subgroup of A4- b) Find all the left cosets of H in A4. c) Find all the right cosets of H in A4. d) Does aH=Ha for all a in A4? {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
TABLE 5.1
The Alternating Group A4 of Even Permutations of {1, 2, 3, 4}
(In this table, the permutations of A4 are designated as 1, a2, . . . , &12 and an entry k
inside the table represents ag. For example, az ag = a6.)
a4
a6
ag
a10
d12
(1) = a1
(12)(34) = a2
(13)(24) = az
(14)(23) = a4
(123) = a5
(243) = a6
1
2
3
4
7
8.
9.
10
11
12
4
6.
2
3
8
7
10
9.
12
3
%3D
7
8.
6
11
12
9.
3
1
8.
6 5 12
7
11
10
8.
6.
9.
12
10
11
1
4
6.
(142) = a7
(134) = ag
(132) = ¤9
7 5 8
10
11
12
2
3
7
6 8 5
11
10
12
9.
3
8
5
6
12
9.
11
10
1
9.
11
12
10
1
4
2
5
7
(143)
10
%3D
a10
12
11
9.
2
4
3
1
6.
8.
(234) = ¤11
11
9.
10
12
9.
(124) = a12
3
1
4
5
6.
12
10
11
4.
1
3
8
S=O9 34126507
O214387 65
1 2
Transcribed Image Text:TABLE 5.1 The Alternating Group A4 of Even Permutations of {1, 2, 3, 4} (In this table, the permutations of A4 are designated as 1, a2, . . . , &12 and an entry k inside the table represents ag. For example, az ag = a6.) a4 a6 ag a10 d12 (1) = a1 (12)(34) = a2 (13)(24) = az (14)(23) = a4 (123) = a5 (243) = a6 1 2 3 4 7 8. 9. 10 11 12 4 6. 2 3 8 7 10 9. 12 3 %3D 7 8. 6 11 12 9. 3 1 8. 6 5 12 7 11 10 8. 6. 9. 12 10 11 1 4 6. (142) = a7 (134) = ag (132) = ¤9 7 5 8 10 11 12 2 3 7 6 8 5 11 10 12 9. 3 8 5 6 12 9. 11 10 1 9. 11 12 10 1 4 2 5 7 (143) 10 %3D a10 12 11 9. 2 4 3 1 6. 8. (234) = ¤11 11 9. 10 12 9. (124) = a12 3 1 4 5 6. 12 10 11 4. 1 3 8 S=O9 34126507 O214387 65 1 2
(13)(24) = a3
(14)(23) = a4
(123) = as
(243) = a6
4
3
2
1
6.
7.5
8.
6.
7.
8.
%3D
(142) = a7
(134) = ag
(132) = a9
(143) = a10
(234) = a11
12
6.
8.
8.
6.
%3D
9 11
12
10
%3D
10
12
11 9
11
6.
10
12
(124) = a12
10
9.
11
%3D
Given H = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
a) Show that His a subgroup of A4-
b) Find all the left cosets of H in A4.
c) Find all the right cosets of H in A4-
d) Does aH =Ha for all a in A4?
345
Transcribed Image Text:(13)(24) = a3 (14)(23) = a4 (123) = as (243) = a6 4 3 2 1 6. 7.5 8. 6. 7. 8. %3D (142) = a7 (134) = ag (132) = a9 (143) = a10 (234) = a11 12 6. 8. 8. 6. %3D 9 11 12 10 %3D 10 12 11 9 11 6. 10 12 (124) = a12 10 9. 11 %3D Given H = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. a) Show that His a subgroup of A4- b) Find all the left cosets of H in A4. c) Find all the right cosets of H in A4- d) Does aH =Ha for all a in A4? 345
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,