Given fiRn DR, fecl, Xıkl ER", and let thele exist de fine a symmetric positive definite Matrix N ERAxa $ ;R-DR by $(x)=f(x(k! _XNXf(x"}) XER, and f(x(kl) +0. assumed y Proof that $1(0) <0, Justify your answer.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Mathematical Problem Statement

Given \( f:\mathbb{R}^n \rightarrow \mathbb{R} \), \( f \in C^1 \), \( x^{(k)} \in \mathbb{R}^n \), and let there exist a symmetric positive definite matrix \( N \in \mathbb{R}^{n \times n} \).

Define \( \phi : \mathbb{R} \rightarrow \mathbb{R} \) by 

\[
\phi(x) = f(x^{(k)} - \alpha N \nabla f(x^{(k)}))
\]

Assume \( \alpha \in \mathbb{R} \), and \( \nabla f(x^{(k)}) \neq 0 \).

1. **Proof that \( \phi(0) < 0 \). Justify your answer.**
Transcribed Image Text:### Mathematical Problem Statement Given \( f:\mathbb{R}^n \rightarrow \mathbb{R} \), \( f \in C^1 \), \( x^{(k)} \in \mathbb{R}^n \), and let there exist a symmetric positive definite matrix \( N \in \mathbb{R}^{n \times n} \). Define \( \phi : \mathbb{R} \rightarrow \mathbb{R} \) by \[ \phi(x) = f(x^{(k)} - \alpha N \nabla f(x^{(k)})) \] Assume \( \alpha \in \mathbb{R} \), and \( \nabla f(x^{(k)}) \neq 0 \). 1. **Proof that \( \phi(0) < 0 \). Justify your answer.**
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,