Given f f g are Continuous at a ERP So, for € 70 ISO such that Thus 창 / & for g, J 8₂ 70 ) f(x)-f(a)|

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Write thoroughly explaining in detailed WORDS ONLY the solution in these photos- (Words explaining the solution to a non-math major)

**Continuity of Functions**

**Given:**  
Functions \( f \) and \( g \) are continuous at \( a \in \mathbb{R}^p \).

**For \( f \):**  
For every \( \varepsilon > 0 \), there exists \( \delta_1 > 0 \) such that  
\[ |f(x) - f(a)| < \varepsilon \quad \forall \|x - a\| < \delta_1 \]

**For \( g \):**  
There exists \( \delta_2 > 0 \) such that  
\[ |g(x) - g(a)| < \varepsilon \quad \forall \|x - a\| < \delta_2 \]

Thus, if we choose \( \delta = \min\{\delta_1, \delta_2\} \), then  
\[ |f(x) - f(a)| < \varepsilon \quad \forall \|x - a\| < \delta_1, \delta < \delta \]

\[ |g(x) - g(a)| < \varepsilon \quad \forall \|x - a\| < \delta_2, \delta < \delta \]

**Conclusion:**  
Hence, for our chosen \( \varepsilon > 0 \), we get \( \delta > 0 \) such that  
\[ |f(x) - f(a)| < \varepsilon \]  
and  
\[ |g(x) - g(a)| < \varepsilon \]  
whenever \(\|x - a\| < \delta\).
Transcribed Image Text:**Continuity of Functions** **Given:** Functions \( f \) and \( g \) are continuous at \( a \in \mathbb{R}^p \). **For \( f \):** For every \( \varepsilon > 0 \), there exists \( \delta_1 > 0 \) such that \[ |f(x) - f(a)| < \varepsilon \quad \forall \|x - a\| < \delta_1 \] **For \( g \):** There exists \( \delta_2 > 0 \) such that \[ |g(x) - g(a)| < \varepsilon \quad \forall \|x - a\| < \delta_2 \] Thus, if we choose \( \delta = \min\{\delta_1, \delta_2\} \), then \[ |f(x) - f(a)| < \varepsilon \quad \forall \|x - a\| < \delta_1, \delta < \delta \] \[ |g(x) - g(a)| < \varepsilon \quad \forall \|x - a\| < \delta_2, \delta < \delta \] **Conclusion:** Hence, for our chosen \( \varepsilon > 0 \), we get \( \delta > 0 \) such that \[ |f(x) - f(a)| < \varepsilon \] and \[ |g(x) - g(a)| < \varepsilon \] whenever \(\|x - a\| < \delta\).
### Continuity of the Product of Functions

To show that \( f \cdot g \) is continuous at \( x = a \), we begin with:

\[ | (f \cdot g)(x) - (f \cdot g)(a) | \]

This is expressed as:

\[ = | f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a) | \]

Using the triangle inequality:

\[ \leq | f(x)g(x) - f(x)g(a) | + | f(x)g(a) - f(a)g(a) | \]

Further simplifying:

\[ \leq | f(x) || g(x) - g(a) | + | g(a) || f(x) - f(a) | \]

Now, since \( f \) is continuous, it is bounded on closed balls. Therefore, if we take \( \tilde{\delta} < \delta \), then:

\[ | f(x) | \leq M \quad \text{for} \quad |x - a| \leq \tilde{\delta} \quad \text{for some} \quad M > 0 \]

Using this, the inequality becomes:

\[ |(f \cdot g)(x) - (f \cdot g)(a)| \leq M \epsilon + | g(a) | \epsilon = \epsilon (M + g(a)) \]

whenever \( |x - a| \leq \tilde{\delta} \).

Clearly, if we choose \( \epsilon_1 > 0 \) and let \( \epsilon = \frac{\epsilon_1}{M + g(a)} \), then we get some \( \delta' > 0 \) [in fact we can take \(\delta' = \tilde{\delta}\)] such that:

\[ |(f \cdot g)(x) - (f \cdot g)(a)| < \epsilon_1, \quad \text{whenever} \quad |x - a| < \delta' \]

Thus, \( f \cdot g \) is continuous at \( x = a \).

**(Proved)**
Transcribed Image Text:### Continuity of the Product of Functions To show that \( f \cdot g \) is continuous at \( x = a \), we begin with: \[ | (f \cdot g)(x) - (f \cdot g)(a) | \] This is expressed as: \[ = | f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a) | \] Using the triangle inequality: \[ \leq | f(x)g(x) - f(x)g(a) | + | f(x)g(a) - f(a)g(a) | \] Further simplifying: \[ \leq | f(x) || g(x) - g(a) | + | g(a) || f(x) - f(a) | \] Now, since \( f \) is continuous, it is bounded on closed balls. Therefore, if we take \( \tilde{\delta} < \delta \), then: \[ | f(x) | \leq M \quad \text{for} \quad |x - a| \leq \tilde{\delta} \quad \text{for some} \quad M > 0 \] Using this, the inequality becomes: \[ |(f \cdot g)(x) - (f \cdot g)(a)| \leq M \epsilon + | g(a) | \epsilon = \epsilon (M + g(a)) \] whenever \( |x - a| \leq \tilde{\delta} \). Clearly, if we choose \( \epsilon_1 > 0 \) and let \( \epsilon = \frac{\epsilon_1}{M + g(a)} \), then we get some \( \delta' > 0 \) [in fact we can take \(\delta' = \tilde{\delta}\)] such that: \[ |(f \cdot g)(x) - (f \cdot g)(a)| < \epsilon_1, \quad \text{whenever} \quad |x - a| < \delta' \] Thus, \( f \cdot g \) is continuous at \( x = a \). **(Proved)**
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,