Given f(-6) = -2,ƒ'(-6) = −18, g(-6) = − 12, and g'(- 6) = 7, find the value of h' (-6) based on the function below. f(x) g(x) h(x) =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
### Problem Statement

Given :
\[ f(-6) = -2 \]
\[ f'(-6) = -18 \]
\[ g(-6) = -12 \]
\[ g'(-6) = 7 \]

find the value of \( h'(-6) \) based on the function below:

\[ h(x) = \frac{f(x)}{g(x)} \]

### Solution

To find \( h'(-6) \), we will use the quotient rule for derivatives. The quotient rule states that if you have a function \( h(x) = \frac{f(x)}{g(x)} \), then its derivative \( h'(x) \) is given by:

\[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \]

Now, we substitute the given values into this formula:

1. \( f'(-6) = -18 \)
2. \( f(-6) = -2 \)
3. \( g'(-6) = 7 \)
4. \( g(-6) = -12 \)

Substitute these values into the quotient rule formula:

\[ h'(-6) = \frac{(-18)(-12) - (-2)(7)}{(-12)^2} \]

Calculate the numerator and denominator separately:

- Numerator: \((-18)(-12) - (-2)(7) = 216 + 14 = 230\)
- Denominator: \((-12)^2 = 144\)

Thus:

\[ h'(-6) = \frac{230}{144} = \frac{115}{72} \]

Therefore, the value of \( h'(-6) \) is \( \frac{115}{72} \).
Transcribed Image Text:### Problem Statement Given : \[ f(-6) = -2 \] \[ f'(-6) = -18 \] \[ g(-6) = -12 \] \[ g'(-6) = 7 \] find the value of \( h'(-6) \) based on the function below: \[ h(x) = \frac{f(x)}{g(x)} \] ### Solution To find \( h'(-6) \), we will use the quotient rule for derivatives. The quotient rule states that if you have a function \( h(x) = \frac{f(x)}{g(x)} \), then its derivative \( h'(x) \) is given by: \[ h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \] Now, we substitute the given values into this formula: 1. \( f'(-6) = -18 \) 2. \( f(-6) = -2 \) 3. \( g'(-6) = 7 \) 4. \( g(-6) = -12 \) Substitute these values into the quotient rule formula: \[ h'(-6) = \frac{(-18)(-12) - (-2)(7)}{(-12)^2} \] Calculate the numerator and denominator separately: - Numerator: \((-18)(-12) - (-2)(7) = 216 + 14 = 230\) - Denominator: \((-12)^2 = 144\) Thus: \[ h'(-6) = \frac{230}{144} = \frac{115}{72} \] Therefore, the value of \( h'(-6) \) is \( \frac{115}{72} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning