Given: BD 1 AC, BD bisects ZABC Prove: AABD == ACBD A D

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
**Transcription of Geometric Proof**

**Given:**
\( BD \perp AC, \, BD \) bisects \( \angle ABC \).

**Prove:**
\( \triangle ABD \cong \triangle CBD \).

**Diagram Explanation:**
The diagram illustrates triangle \( ABC \) with line \( BD \) drawn from point \( B \) to intersect at point \( D \) on line \( AC \). \( BD \) is perpendicular to \( AC \) and bisects \( \angle ABC \).

**Proof Structure:**

| **Statements**                           | **Reasons**                              |
|------------------------------------------|------------------------------------------|
| 1) \( BD \perp AC, \, BD \) bisects \( \angle ABC \). | 1) Given                                   |
| 2) \( \angle ADB = \angle CDB \)          | 2) Definition of perpendicular             |
| 3) \( \angle ABD = \angle CBD \)          | 3) Definition of angle bisector            |
| 4) \( BD = BD \)                          | 4) Reflexive Property of \(\cong\)         |
| 5) \( \triangle ABD \cong \triangle CBD \) | 5) ASA (Angle-Side-Angle) Postulate        |

This proof demonstrates that triangles \( \triangle ABD \) and \( \triangle CBD \) are congruent through the ASA postulate, using the given information and properties of angles and perpendicular bisectors.
Transcribed Image Text:**Transcription of Geometric Proof** **Given:** \( BD \perp AC, \, BD \) bisects \( \angle ABC \). **Prove:** \( \triangle ABD \cong \triangle CBD \). **Diagram Explanation:** The diagram illustrates triangle \( ABC \) with line \( BD \) drawn from point \( B \) to intersect at point \( D \) on line \( AC \). \( BD \) is perpendicular to \( AC \) and bisects \( \angle ABC \). **Proof Structure:** | **Statements** | **Reasons** | |------------------------------------------|------------------------------------------| | 1) \( BD \perp AC, \, BD \) bisects \( \angle ABC \). | 1) Given | | 2) \( \angle ADB = \angle CDB \) | 2) Definition of perpendicular | | 3) \( \angle ABD = \angle CBD \) | 3) Definition of angle bisector | | 4) \( BD = BD \) | 4) Reflexive Property of \(\cong\) | | 5) \( \triangle ABD \cong \triangle CBD \) | 5) ASA (Angle-Side-Angle) Postulate | This proof demonstrates that triangles \( \triangle ABD \) and \( \triangle CBD \) are congruent through the ASA postulate, using the given information and properties of angles and perpendicular bisectors.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Area
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning