Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1
Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1<k<100 • 1 ≤ ar[i] ≤ 100 Sample Input fin Contest ends in 5 days Submissions: 45 Max Score: 20 Difficulty: Easy Rate This Challenge: More STDIN 63 1 3 2 6 12 Function n6, k3 ar [1, 3, 2, 6, 1, 2] Sample Output 5 Explanation Here are the 5 valid pairs when k = 3: (0,2) ar[0] + ar[2]=1+2=3 (0,5) ar[0] + ar[5]=1+2=3 • (1,3) ar[1]+ar [3]=3+6=9 (2, 4) ar[2] + ar[4] = 2+1=3 • (4,5)→ ar[4] + ar[5]=1+ 2=3
![Function Description
Complete the divisibleSumPairs function in the editor below.
divisibleSumPairs has the following parameter(s):
int n: the length of array ar
• intar[n]: an array of integers
• int k: the integer divisor
Returns
-int: the number of pairs
Input Format
The first line contains 2 space-separated integers, 7 and k.
The second line contains space-separated integers, each a value of arr[i].
Constraints
• 2 ≤ n ≤ 100
.
• 1 ≤ k ≤ 100
1 ≤ ar[i] ≤ 100
Sample Input
STDIN
.
63
132612
Sample Output
5
Function
Explanation
Here are the 5 valid pairs when k = 3:
(0,2)→ar[0] + ar[2] = 1+2=3
(0,5) → ar[0] + ar[5] =1+2=3
(1,3)→ar[1] + ar[3] =3+6=9
(2,4)→ar[2] + ar[4] =2+1=3
(4,5) →ar[4] + ar[5] =1+2=3
n-6, k 3
ar [1, 3, 2, 6, 1, 2]
M7890
1 with Ada.Text 10, Ada. Integer_Text_10;
use Ada;
4 procedure Solution is
--Enter your code here. Read input from STDIN. Print output to STDOUT
10 end Solution
More
Ada
X10](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F252320e2-0730-4470-b43f-ccba1610467c%2Fafcfa575-9e31-4433-b632-0c9379792491%2Fw4v6m44_processed.png&w=3840&q=75)

Step by step
Solved in 4 steps with 2 images









