Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1
Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1<k<100 • 1 ≤ ar[i] ≤ 100 Sample Input fin Contest ends in 5 days Submissions: 45 Max Score: 20 Difficulty: Easy Rate This Challenge: More STDIN 63 1 3 2 6 12 Function n6, k3 ar [1, 3, 2, 6, 1, 2] Sample Output 5 Explanation Here are the 5 valid pairs when k = 3: (0,2) ar[0] + ar[2]=1+2=3 (0,5) ar[0] + ar[5]=1+2=3 • (1,3) ar[1]+ar [3]=3+6=9 (2, 4) ar[2] + ar[4] = 2+1=3 • (4,5)→ ar[4] + ar[5]=1+ 2=3
Step by step
Solved in 4 steps with 2 images