Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Given an array of integers and a positive integer k, determine the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k. Example ar [1, 2, 3, 4, 5, 6] k=5 Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6]. Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): • int n: the length of array ar ⚫int ar[n]: an array of integers . int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 11 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 • 1<k<100 • 1 ≤ ar[i] ≤ 100 Sample Input fin Contest ends in 5 days Submissions: 45 Max Score: 20 Difficulty: Easy Rate This Challenge: More STDIN 63 1 3 2 6 12 Function n6, k3 ar [1, 3, 2, 6, 1, 2] Sample Output 5 Explanation Here are the 5 valid pairs when k = 3: (0,2) ar[0] + ar[2]=1+2=3 (0,5) ar[0] + ar[5]=1+2=3 • (1,3) ar[1]+ar [3]=3+6=9 (2, 4) ar[2] + ar[4] = 2+1=3 • (4,5)→ ar[4] + ar[5]=1+ 2=3

Function Description
Complete the divisibleSumPairs function in the editor below.
divisibleSumPairs has the following parameter(s):
int n: the length of array ar
• intar[n]: an array of integers
• int k: the integer divisor
Returns
-int: the number of pairs
Input Format
The first line contains 2 space-separated integers, 7 and k.
The second line contains space-separated integers, each a value of arr[i].
Constraints
• 2 ≤ n ≤ 100
.
• 1 ≤ k ≤ 100
1 ≤ ar[i] ≤ 100
Sample Input
STDIN
.
63
132612
Sample Output
5
Function
Explanation
Here are the 5 valid pairs when k = 3:
(0,2)→ar[0] + ar[2] = 1+2=3
(0,5) → ar[0] + ar[5] =1+2=3
(1,3)→ar[1] + ar[3] =3+6=9
(2,4)→ar[2] + ar[4] =2+1=3
(4,5) →ar[4] + ar[5] =1+2=3
n-6, k 3
ar [1, 3, 2, 6, 1, 2]
M7890
1 with Ada.Text 10, Ada. Integer_Text_10;
use Ada;
4 procedure Solution is
--Enter your code here. Read input from STDIN. Print output to STDOUT
10 end Solution
More
Ada
X10
Transcribed Image Text:Function Description Complete the divisibleSumPairs function in the editor below. divisibleSumPairs has the following parameter(s): int n: the length of array ar • intar[n]: an array of integers • int k: the integer divisor Returns -int: the number of pairs Input Format The first line contains 2 space-separated integers, 7 and k. The second line contains space-separated integers, each a value of arr[i]. Constraints • 2 ≤ n ≤ 100 . • 1 ≤ k ≤ 100 1 ≤ ar[i] ≤ 100 Sample Input STDIN . 63 132612 Sample Output 5 Function Explanation Here are the 5 valid pairs when k = 3: (0,2)→ar[0] + ar[2] = 1+2=3 (0,5) → ar[0] + ar[5] =1+2=3 (1,3)→ar[1] + ar[3] =3+6=9 (2,4)→ar[2] + ar[4] =2+1=3 (4,5) →ar[4] + ar[5] =1+2=3 n-6, k 3 ar [1, 3, 2, 6, 1, 2] M7890 1 with Ada.Text 10, Ada. Integer_Text_10; use Ada; 4 procedure Solution is --Enter your code here. Read input from STDIN. Print output to STDOUT 10 end Solution More Ada X10
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Arrays
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education