Give the inverse Laplace transform of -25 + (s – 4) e +9 F(s) = as a function of x. Note: The function u below is the unit step function, which is also known as the Heaviside function. a) O f(x) = -2 cos(3 x) – 4(x – T) cos( 3x) + 4 u(x- 7) sin(3x) b) O f(x) = -2 cos( 3 x) + u(x - a) cos( 3 x) + 5 -(x- x) sin(3x) 3 f(x) =2 sin(3x) + 3u(x- n) cos(3 x) + 2u(x – n) sin(3x) f(x) =2 sin(3x) – 3 u(x – 1) cos(3x) + 5 (x-x) sin(3x) 5 4 (x – T) sin (3x) -3x f(x) = -2 e3*+ u(x – n) cos(3 x) + 3 f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct. 

**Inverse Laplace Transform Problem**

**Objective:** Determine the inverse Laplace transform of the given function \( F(s) \) as a function of \( x \).

**Function:**

\[ 
F(s) = \frac{-2s + (s - 4) e^{-πs}}{s^2 + 9} 
\]

**Note:** The function \( u \) below is the unit step function, which is also known as the Heaviside function.

**Options:**

a) \( f(x) = -2 \cos(3x) - u(x - \pi) \cos(3x) + \frac{4}{3} u(x - \pi) \sin(3x) \)

b) \( f(x) = -2 \cos(3x) + u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \)

c) \( f(x) = 2 \sin(3x) + 3 u(x - \pi) \cos(3x) + 2 u(x - \pi) \sin(3x) \)

d) \( f(x) = 2 \sin(3x) - 3 u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \)

e) \( f(x) = -2 e^{-3x} + 4 u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \)

f) \( \) None of the above.

The problem involves using the inverse Laplace transform to convert a function from the \( s \)-domain back into the time domain, \( x \), using potential expressions involving trigonometric functions and the unit step function.
Transcribed Image Text:**Inverse Laplace Transform Problem** **Objective:** Determine the inverse Laplace transform of the given function \( F(s) \) as a function of \( x \). **Function:** \[ F(s) = \frac{-2s + (s - 4) e^{-πs}}{s^2 + 9} \] **Note:** The function \( u \) below is the unit step function, which is also known as the Heaviside function. **Options:** a) \( f(x) = -2 \cos(3x) - u(x - \pi) \cos(3x) + \frac{4}{3} u(x - \pi) \sin(3x) \) b) \( f(x) = -2 \cos(3x) + u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \) c) \( f(x) = 2 \sin(3x) + 3 u(x - \pi) \cos(3x) + 2 u(x - \pi) \sin(3x) \) d) \( f(x) = 2 \sin(3x) - 3 u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \) e) \( f(x) = -2 e^{-3x} + 4 u(x - \pi) \cos(3x) + \frac{5}{3} u(x - \pi) \sin(3x) \) f) \( \) None of the above. The problem involves using the inverse Laplace transform to convert a function from the \( s \)-domain back into the time domain, \( x \), using potential expressions involving trigonometric functions and the unit step function.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,