Give the general solution of the differential equation y"- 5y'+ 6y =x +3x 5 2 x+ 12 155 37 1 3 x + 216 36 155 b) O y-c, + C, - 5 2 216 36 12 6. 7 + 216 67 1 1 c) O y-C 36 12 67 d) O y=C, * + C,e* + 1 x+ 12 3x 216 36 331 125 13 2 5 e) O y=C, e* 216 36 6 f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

**Differential Equation Solution Options**

**Problem Statement:**
Determine the general solution of the differential equation:

\[ y'' - 5y' + 6y = x^{-3} + 3x \]

**Solution Options:**

a) \[ y = C_1 e^{2x} + C_2 e^{3x} + \frac{155}{216} + \frac{37}{36} x + \frac{5}{12} x^2 + \frac{1}{6} x^3 \]

b) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{155}{216} - \frac{37}{36} x + \frac{5}{12} x^2 - \frac{1}{6} x^3 \]

c) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{67}{216} + \frac{7}{36} x - \frac{1}{12} x^2 + \frac{1}{6} x^3 \]

d) \[ y = C_1 e^{2x} + C_2 e^{3x} + \frac{67}{216} - \frac{7}{36} x + \frac{1}{12} x^2 - \frac{1}{6} x^3 \]

e) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{331}{216} + \frac{125}{36} x - \frac{13}{12} x^2 - \frac{5}{6} x^3 \]

f) None of the above.

Each option is a proposed solution to the given differential equation, where \( C_1 \) and \( C_2 \) are constants to be determined based on initial conditions or further information.

**Explanation of Components:**
- \( C_1 e^{2x} + C_2 e^{3x} \): Homogeneous solution to the differential equation.
- Terms like \(\frac{155}{216}\), \(\frac{37}{36} x\), etc., represent the particular solution to the differential equation based on the non-homogeneous part \(x^{-3} + 3x
Transcribed Image Text:**Differential Equation Solution Options** **Problem Statement:** Determine the general solution of the differential equation: \[ y'' - 5y' + 6y = x^{-3} + 3x \] **Solution Options:** a) \[ y = C_1 e^{2x} + C_2 e^{3x} + \frac{155}{216} + \frac{37}{36} x + \frac{5}{12} x^2 + \frac{1}{6} x^3 \] b) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{155}{216} - \frac{37}{36} x + \frac{5}{12} x^2 - \frac{1}{6} x^3 \] c) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{67}{216} + \frac{7}{36} x - \frac{1}{12} x^2 + \frac{1}{6} x^3 \] d) \[ y = C_1 e^{2x} + C_2 e^{3x} + \frac{67}{216} - \frac{7}{36} x + \frac{1}{12} x^2 - \frac{1}{6} x^3 \] e) \[ y = C_1 e^{2x} + C_2 e^{3x} - \frac{331}{216} + \frac{125}{36} x - \frac{13}{12} x^2 - \frac{5}{6} x^3 \] f) None of the above. Each option is a proposed solution to the given differential equation, where \( C_1 \) and \( C_2 \) are constants to be determined based on initial conditions or further information. **Explanation of Components:** - \( C_1 e^{2x} + C_2 e^{3x} \): Homogeneous solution to the differential equation. - Terms like \(\frac{155}{216}\), \(\frac{37}{36} x\), etc., represent the particular solution to the differential equation based on the non-homogeneous part \(x^{-3} + 3x
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,