Give the general solution of the differential equation 4x p"+4y'+ 20y =2 e** cos( 2x) 1 e** cos( 2x) + 1 e** sin (2 x) + cos( 2 x) C, + C, sin(4 x) 4x a) O y= 30 4x 60 1 4x 1 4x b) O y =C, e"cos(2 x) + C, e** sin( 2 x) + e"cos( 2 x) + 30 e" sin(2x) 60 1 e** cos( 2x) 4x 4x c) O y=C, e*cos( 2 x) + C, e** sin(2x) 30 60 e" sin(2x) 1 1 e** sin (2 x) -2x -2x 4x 4x d) O y=C, e *cos(4 x) + C, e +C,e*sin(4x) + e" cos( 2 x) + 30 60 1 e*"cos( 2 x) 30 -2x 1 -2x sin(4 x) 4x 4x e) O y=C, e 4* cos(4 x) + C, e e" sin (2 x) 60 - f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

**Problem Statement:**

Give the general solution of the differential equation

\[ y'' + 4y' + 20y = 2e^{4x} \cos(2x) \]

**Options:**

a) \( y = \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) + \cos(2x)C_1 + C_2 \sin(4x) \)

b) \( y = C_1 e^{4x} \cos(2x) + C_2 e^{4x} \sin(2x) + \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) \)

c) \( y = C_1 e^{4x} \cos(2x) + C_2 e^{4x} \sin(2x) - \frac{1}{30} e^{4x} \cos(2x) - \frac{1}{60} e^{4x} \sin(2x) \)

d) \( y = C_1 e^{-2x} \cos(4x) + C_2 e^{-2x} \sin(4x) + \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) \)

e) \( y = C_1 e^{-2x} \cos(4x) + C_2 e^{-2x} \sin(4x) - \frac{1}{30} e^{4x} \cos(2x) - \frac{1}{60} e^{4x} \sin(2x) \)

f) None of the above.
Transcribed Image Text:**Problem Statement:** Give the general solution of the differential equation \[ y'' + 4y' + 20y = 2e^{4x} \cos(2x) \] **Options:** a) \( y = \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) + \cos(2x)C_1 + C_2 \sin(4x) \) b) \( y = C_1 e^{4x} \cos(2x) + C_2 e^{4x} \sin(2x) + \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) \) c) \( y = C_1 e^{4x} \cos(2x) + C_2 e^{4x} \sin(2x) - \frac{1}{30} e^{4x} \cos(2x) - \frac{1}{60} e^{4x} \sin(2x) \) d) \( y = C_1 e^{-2x} \cos(4x) + C_2 e^{-2x} \sin(4x) + \frac{1}{30} e^{4x} \cos(2x) + \frac{1}{60} e^{4x} \sin(2x) \) e) \( y = C_1 e^{-2x} \cos(4x) + C_2 e^{-2x} \sin(4x) - \frac{1}{30} e^{4x} \cos(2x) - \frac{1}{60} e^{4x} \sin(2x) \) f) None of the above.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,