Give the component form of AB and find AB algebraically. 3. A(-2, -1) B(6, -2) 4. A(8, 6) B(-4, 11)

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Component Form and Magnitude of Vectors**

To calculate the component form of vector \(\overrightarrow{AB}\), and to find its magnitude \(|AB|\) algebraically, follow these steps.

### Problem 3:
Given points:
- \( A(-2, -1) \)
- \( B(6, -2) \)

1. **Component Form**: 
   \[
   \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (6 - (-2), -2 - (-1)) = (8, -1)
   \]

2. **Magnitude**:
   \[
   |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(6 - (-2))^2 + (-2 - (-1))^2}
   \]
   \[
   |AB| = \sqrt{8^2 + (-1)^2} = \sqrt{64 + 1} = \sqrt{65}
   \]

### Problem 4:
Given points:
- \( A(8, 6) \)
- \( B(-4, 11) \)

1. **Component Form**:
   \[
   \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (-4 - 8, 11 - 6) = (-12, 5)
   \]

2. **Magnitude**:
   \[
   |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-4 - 8)^2 + (11 - 6)^2}
   \]
   \[
   |AB| = \sqrt{(-12)^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13
   \]

Use these calculations to comprehend the component form and magnitude of vectors in a coordinate plane.
Transcribed Image Text:**Component Form and Magnitude of Vectors** To calculate the component form of vector \(\overrightarrow{AB}\), and to find its magnitude \(|AB|\) algebraically, follow these steps. ### Problem 3: Given points: - \( A(-2, -1) \) - \( B(6, -2) \) 1. **Component Form**: \[ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (6 - (-2), -2 - (-1)) = (8, -1) \] 2. **Magnitude**: \[ |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(6 - (-2))^2 + (-2 - (-1))^2} \] \[ |AB| = \sqrt{8^2 + (-1)^2} = \sqrt{64 + 1} = \sqrt{65} \] ### Problem 4: Given points: - \( A(8, 6) \) - \( B(-4, 11) \) 1. **Component Form**: \[ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (-4 - 8, 11 - 6) = (-12, 5) \] 2. **Magnitude**: \[ |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-4 - 8)^2 + (11 - 6)^2} \] \[ |AB| = \sqrt{(-12)^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] Use these calculations to comprehend the component form and magnitude of vectors in a coordinate plane.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education