Give a counterexample, with two numerical pairs (x₁, y₁) and (x₂, y₂), to show that the given transformation is not a linear transformation. +[x]-[x] (X₁x Y₁r X₂x Y₂) = (

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercise: Counterexample for Linear Transformation**

**Objective:** Demonstrate that the given transformation is not linear by providing a counterexample with two numerical pairs \((x_1, y_1)\) and \((x_2, y_2)\).

**Transformation Definition:**  
\[ T \left[ \begin{array}{c} x \\ y \end{array} \right] = \left[ \begin{array}{c} y \\ x^2 \end{array} \right] \]

**Counterexample:**

Choose numerical values for \( (x_1, y_1, x_2, y_2) \) and illustrate how they fit into the transformation. Use these values to verify that the transformation does not satisfy the conditions for linearity (additivity and scalar multiplication).

\[ (x_1, y_1, x_2, y_2) = \left( \begin{array}{c} \text{[Blank for student input]} \end{array} \right) \]
Transcribed Image Text:**Exercise: Counterexample for Linear Transformation** **Objective:** Demonstrate that the given transformation is not linear by providing a counterexample with two numerical pairs \((x_1, y_1)\) and \((x_2, y_2)\). **Transformation Definition:** \[ T \left[ \begin{array}{c} x \\ y \end{array} \right] = \left[ \begin{array}{c} y \\ x^2 \end{array} \right] \] **Counterexample:** Choose numerical values for \( (x_1, y_1, x_2, y_2) \) and illustrate how they fit into the transformation. Use these values to verify that the transformation does not satisfy the conditions for linearity (additivity and scalar multiplication). \[ (x_1, y_1, x_2, y_2) = \left( \begin{array}{c} \text{[Blank for student input]} \end{array} \right) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,