gf two points (x₁, y₁) and (X₂, Y₂) (i.) Distance J(s=k) + (Y2-y,)2 (xite, y, + y₂) ty२) 2 2 (iv.) Here So (ii.) mid point = Slope (m) = = given distance equation of line (iii) slope tano mid point = = Уг-у, x2-x1 P₁ = (√₂,5), = √(√2+3)²+(2-5)² 7 3+√2 (iv.) equation of line is (√2-3, 5-2) -2-5 -3-√2 y = m(x-x₂) + y₂₁ P₂= (-3,-2) = So are given = = y = then 2+9+ 6√2+49 (√2-3, 2-) AS = = 7 3+√2 -7 -(3+√2) AS 0 = tan² (3+√₂²) AS √60 +6√2 75 (x+3)-2 3+√2 क

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

TRANSCRIBE ALL TEXT IN DIGITAL FORMAT

If two points (X₁, Y₁) and (x₂, Y₂₁)
(i.) Distance =
√√(x₂-x₁)² + (1₂-y₁) ²
(५२-५,) 2
(15-)
mid point
(-)
(iv.)
Here
So
(ii)
Slope (m) =
given
distance
Н2-х,
equation of line &
(iii) slope =
tano
(x₁+x², y₁ + y₂)
у, туг)
2
=
=
Уг-у,
mid point = (√2-3,
P₁ = (√₂,5),
√(√2+3)² + (2-5)²
-2-5
-3-√2
7
3+√2
y =
= m(x-x4₂²) + y₂
So
(iv.) equation of line is
P₂= (-3,-2)
are given
=
5=2)
(√2-3, 6-2)=(√2-3, 2) As
0=
-7
-(3+√2)
=
then
2+9+ 6√2+49
y = 7
3+√2
=
7
3+√2
не
7
tan' (3+√₂) AS
(x+3)-2
60+6√2
Transcribed Image Text:If two points (X₁, Y₁) and (x₂, Y₂₁) (i.) Distance = √√(x₂-x₁)² + (1₂-y₁) ² (५२-५,) 2 (15-) mid point (-) (iv.) Here So (ii) Slope (m) = given distance Н2-х, equation of line & (iii) slope = tano (x₁+x², y₁ + y₂) у, туг) 2 = = Уг-у, mid point = (√2-3, P₁ = (√₂,5), √(√2+3)² + (2-5)² -2-5 -3-√2 7 3+√2 y = = m(x-x4₂²) + y₂ So (iv.) equation of line is P₂= (-3,-2) are given = 5=2) (√2-3, 6-2)=(√2-3, 2) As 0= -7 -(3+√2) = then 2+9+ 6√2+49 y = 7 3+√2 = 7 3+√2 не 7 tan' (3+√₂) AS (x+3)-2 60+6√2
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,