Gamma function The gamma function is defined by T(p) = ™ 2P a. Use the reduction formula 1. x²e-¹ dx dx, for p not equal to zero or a negative integer. 1² e-4² du = √.00 P to show that I'(p+1) =p! (p factorial). b. Use the substitution x = u² and the fact that √T 2 xPle dx for p = 1, 2, 3, ... to show that I 2 = √T.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Gamma Function**: The gamma function is defined by

\[
\Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} \, dx,
\]

for \( p \) not equal to zero or a negative integer.

a. Use the reduction formula

\[
\int_{0}^{\infty} x^{p} e^{-x} \, dx = p \int_{0}^{\infty} x^{p-1} e^{-x} \, dx \quad \text{for } p = 1, 2, 3, \ldots
\]

to show that \(\Gamma(p + 1) = p! \) (p factorial).

b. Use the substitution \( x = u^2 \) and the fact that

\[
\int_{0}^{\infty} e^{-u^2} \, du = \frac{\sqrt{\pi}}{2}
\]

to show that \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}\).
Transcribed Image Text:**Gamma Function**: The gamma function is defined by \[ \Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} \, dx, \] for \( p \) not equal to zero or a negative integer. a. Use the reduction formula \[ \int_{0}^{\infty} x^{p} e^{-x} \, dx = p \int_{0}^{\infty} x^{p-1} e^{-x} \, dx \quad \text{for } p = 1, 2, 3, \ldots \] to show that \(\Gamma(p + 1) = p! \) (p factorial). b. Use the substitution \( x = u^2 \) and the fact that \[ \int_{0}^{\infty} e^{-u^2} \, du = \frac{\sqrt{\pi}}{2} \] to show that \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}\).
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning