f(x,y) = x=y - 2xy? + 3xy +4 %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
What is the global maximum and minimum of this function on the rectangle [0,2]x[0,2]?
f(x.y) = x²y - 2xy? + 3xy +4
2XV
ニ
Transcribed Image Text:f(x.y) = x²y - 2xy? + 3xy +4 2XV ニ
Expert Solution
Step 1

Given function is fX,Y=X2Y2XY2+3XY+4

We have to find the global maximum and minimum of this function on the rectangle [0,2]x[0,2]

Differentiate fX,Y=X2Y2XY2+3XY+4 with respect to X

fX=ddXX2Y2XY2+3XY+4=2XY2Y2+3Y+0=2XY2Y2+3Y

Hence, fX=2XY2Y2+3Y

Now, differentiate fX,Y=X2Y2XY2+3XY+4 with respect to Y

fY=ddYX2Y2XY2+3XY+4=X24XY+3X+0=X24XY+3X

Hence, fY=X24XY+3X

Step 2

Equate fX=0 and fY=0

2XY2Y2+3Y=0.....1X24XY+3X=0.......2

Now, solve equation (1)

2XY2Y2+3Y=0Y2X2Y+3=0Y=0 or 2X2Y+3=0Y=0 or Y=2X+32

Now, solve equation (2)

X24XY+3X=0XX4Y+3=0X=0 or X4Y+3=0X=0 or X=4Y3

Now, substitute X=4Y3 in Y=2X+32

Y=24Y3+32Y=8Y6+32Y=8Y322Y=8Y3Y=12

Now, substitute Y=12 in X=4Y3

X=4123X=1

Hence, critical points are 0,0,0,12,-1,0 and -1,12

Since, we have to choose global maximum and minimum in [0,2]x[0,2]

Hence, critical points are 0,0 and 0,12.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,