fx | Replicate # Replicate # Control Fertilized 0.362 0.315 0.398 0.624 0.419 0.478 0.143 0.332 0.445 0.392 0.053 0.098 0.114 0.13 0.317 0.71 10 0.443 0.373 11 10 0.36 0.203 12 11 0.026 0.611 13 12 0.545 0.404 14 13 0.308 0.481 15 14 0.376 0.698 16 15 0.212 0.616 17 16 0.057 0.415 18 17 0.44 0.593 19 18 0.097 0.244 20 19 0.373 0.779 21 20 0.144 0.616 22 21 0.283 0.498 23 22 0.58 0.018 24 23 0.429 0.03 25 24 0.196 0.686 26 25 0.197 0.366 0.129 0.301 27 26 28 27 0.269 0.019 29 28 0.246 0.653 30 29 0.383 0.124 31 30 0.247 0.353 32 t Table cumulative prob. t-0.5 t-0.75 t-0.80 t-0.85 t-0.90 t-0.95 t-0,975 t-0.99 t-0.995 t-0.999 one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 two-tails 1.00 0 50 0.40 0.30 0.20 0.10 0.05 001 0.02 0.002 df 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 10 0.000 0.700 0.879 1.093 1.327 1.812 2.228 2.764 3.169 4.144 11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.597 20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098
Unitary Method
The word “unitary” comes from the word “unit”, which means a single and complete entity. In this method, we find the value of a unit product from the given number of products, and then we solve for the other number of products.
Speed, Time, and Distance
Imagine you and 3 of your friends are planning to go to the playground at 6 in the evening. Your house is one mile away from the playground and one of your friends named Jim must start at 5 pm to reach the playground by walk. The other two friends are 3 miles away.
Profit and Loss
The amount earned or lost on the sale of one or more items is referred to as the profit or loss on that item.
Units and Measurements
Measurements and comparisons are the foundation of science and engineering. We, therefore, need rules that tell us how things are measured and compared. For these measurements and comparisons, we perform certain experiments, and we will need the experiments to set up the devices.
A soil scientist has just developed a new type of fertilizer and she wants to determine whether it helps carrots grow larger. She sets up several pots of soil and plants one carrot seed in each pot. Fertilizer is added to half the pots. All the pots are placed in a temperature-controlled greenhouse where they receive adequate light and equal amounts of water. After two months of growth, the scientist harvests the carrots and weighs them (in kilograms). Below is a data table showing the weight of the carrots at the end of the growing period from the two treatment groups.
When analyzing this dataset with a t-test, the hypothesis states that the average size of the carrots from each treatment are the same, whereas the hypothesis states that the fertilized carrots are larger in size.
To analyze this data set, should the scientist use a -tailed t-test?
After performing a t-test, what is the calculated t-value for this data set? (Round your answer to four decimal places)
Use the table below to report the critical t-value for the appropriate t-test
Would you reject or fail to reject the null hypothesis?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images