Fvaluat pimp dp

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
icon
Concept explainers
Topic Video
Question
### Evaluate the Following Integral

\[
\int p^{6} \ln(p) \, dp
\]

This expression represents the integral of \( p^6 \ln(p) \) with respect to \( p \). The goal is to find the antiderivative or the function F(p) whose derivative is \( p^6 \ln(p) \). 

#### Steps to Solve:

1. **Integration by Parts:**
   - Integration by parts formula: \(\int u \, dv = uv - \int v \, du\).
   - Choose \( u \) and \( dv \) appropriately based on the problem.
     - Let \( u = \ln(p) \), then \( du = \frac{1}{p} dp \).
     - Let \( dv = p^6 dp \), then \( v = \frac{p^7}{7} \).

2. **Apply Integration by Parts:**
   \[
   \int p^6 \ln(p) \, dp = \ln(p) \cdot \frac{p^7}{7} - \int \frac{p^7}{7} \cdot \frac{1}{p} \, dp
   \]
   Simplify the integral:
   \[
   = \frac{p^7 \ln(p)}{7} - \int \frac{p^6}{7} \, dp
   \]
3. **Evaluate the Remaining Integral:**
   \[
   \int \frac{p^6}{7} \, dp = \frac{1}{7} \int p^6 \, dp = \frac{1}{7} \cdot \frac{p^7}{7} = \frac{p^7}{49}
   \]

4. **Combine Results:**
   \[
   \int p^6 \ln(p) \, dp = \frac{p^7 \ln(p)}{7} - \frac{p^7}{49} + C
   \]
   Simplify the expression:
   \[
   = \frac{p^7 \ln(p)}{7} - \frac{p^7}{49} + C
   = \frac{p^7}{7} \left( \ln(p) - \frac{1}{7} \right) + C
   \]
Transcribed Image Text:### Evaluate the Following Integral \[ \int p^{6} \ln(p) \, dp \] This expression represents the integral of \( p^6 \ln(p) \) with respect to \( p \). The goal is to find the antiderivative or the function F(p) whose derivative is \( p^6 \ln(p) \). #### Steps to Solve: 1. **Integration by Parts:** - Integration by parts formula: \(\int u \, dv = uv - \int v \, du\). - Choose \( u \) and \( dv \) appropriately based on the problem. - Let \( u = \ln(p) \), then \( du = \frac{1}{p} dp \). - Let \( dv = p^6 dp \), then \( v = \frac{p^7}{7} \). 2. **Apply Integration by Parts:** \[ \int p^6 \ln(p) \, dp = \ln(p) \cdot \frac{p^7}{7} - \int \frac{p^7}{7} \cdot \frac{1}{p} \, dp \] Simplify the integral: \[ = \frac{p^7 \ln(p)}{7} - \int \frac{p^6}{7} \, dp \] 3. **Evaluate the Remaining Integral:** \[ \int \frac{p^6}{7} \, dp = \frac{1}{7} \int p^6 \, dp = \frac{1}{7} \cdot \frac{p^7}{7} = \frac{p^7}{49} \] 4. **Combine Results:** \[ \int p^6 \ln(p) \, dp = \frac{p^7 \ln(p)}{7} - \frac{p^7}{49} + C \] Simplify the expression: \[ = \frac{p^7 \ln(p)}{7} - \frac{p^7}{49} + C = \frac{p^7}{7} \left( \ln(p) - \frac{1}{7} \right) + C \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Sample space, Events, and Basic Rules of Probability
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning